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ABSTRACT 

We propose and study a new input modality, WristWhirl, 

that uses the wrist as an always-available joystick to perform 

one-handed continuous input on smartwatches. We explore 

the influence of the wrist’s bio-mechanical properties for 

performing gestures to interact with a smartwatch, both 

while standing still and walking. Through a user study, we 

examine the impact of performing 8 distinct gestures (4 

directional marks, and 4 free-form shapes) on the stability of 

the watch surface. Participants were able to perform 

directional marks using the wrist as a joystick at an average 

rate of half a second and free-form shapes at an average rate 

of approximately 1.5secs. The free-form shapes could be 

recognized by a $1 gesture recognizer with an accuracy of 

93.8% and by three human inspectors with an accuracy of 

85%. From these results, we designed and implemented a 

proof-of-concept device by augmenting the watchband using 

an array of proximity sensors, which can be used to draw 

gestures with high quality. Finally, we demonstrate a number 

of scenarios that benefit from one-handed continuous input 

on smartwatches using WristWhirl. 
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INTRODUCTION 
Interacting with a smartwatch often necessitates both hands, 

especially for continuous input such as flicking the device 

screen with the opposite-side hand (OSH) [34]. This 

becomes tedious as such wearable devices are predominantly 

valuable for glancing at information when the users’ hands 

are occupied while holding objects or busy at other tasks.  

Efforts are underway at developing methods to allow same-

side hand (SSH) operation on smartwatches. However, these 

have primarily targeted discrete input operations, such as in 

the case of micro-interactions [21, 33] or for assigning 

commands to finger postures [10, 24, 36]. Tilting the wrist is 

a viable approach [9], but comes at the cost of quickly losing 

visual contact with the display as tilt movements can exceed 

the acceptable screen viewing ranges [9, 23]. Performing 

more expressive continuous gestural input still remains 

challenging using the same-side hand.  

We study and present an alternative approach, WristWhirl, 

an interaction technique that uses continuous wrist 

movements, or whirls, for one-handed operation on 

smartwatches (Figure 1). When observing the collective 

range-of-motions of the wrist along each of its axes of 

movement [12] (see Figure 2 and the WRIST AS JOYSTICK 

section), the hand can be viewed as a natural joystick. We 

explore the ability of the human wrist to perform complex 

gestures using full wrist motions, or wrist whirls. We first 

demonstrate that wrist whirl is sufficiently expressive to 

capture common touch interactions as well as generate free-

form shapes (Figure 1 right) without impacting screen 

viewing stability. To validate the use of WristWhirl in 

different application scenarios, we implemented a proof-of-

concept wristband sensor (Figure 1 left) by augmenting the 

strap of a smartwatch using an array of infrared proximity 

sensors, facing the user’s palm. The sensors detect the wrist’s 

joystick-like motion by sensing the degree of 

flexion/extension and ulnar/radial deviation of the wrist 

motion. Our preliminary system evaluation showed that the 

user could use the prototype to draw gestures at a quality 

comparable to that achieved by a commercial motion 

tracking system (e.g. Vicon [3]). Our approach does not seek 

to replace two-handed use of smartwatches, but instead 

provides an alternative to same-sided smartwatch input. 

 

Figure 1. Left: Wrist whirling using our prototype. Right: 

example gestures drawn using the prototype [top: horizontal, 

vertical, slash, backslash, equivalent to flicking the 

touchscreen; bottom: circle, question mark, triangle, rectangle] 
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Our contributions from this work include: (1) the notion and 

investigation of using wrist whirls for one-handed 

continuous input on smartwatches; (2) the implementation 

and evaluation of a proof-of-concept prototype for detecting 

wrist whirl gestures; and (3) a set of usage scenarios to 

demonstrate WristWhirl’s unique capabilities.   

LITERATURE REVIEW 

In this section, we present the existing literature in enabling 

one-handed interaction on smartwatches using discrete and 

continuous gestures. Given this scope, we exclude prior 

research on interactions without involving hand input (e.g. 

voice input). We also discuss various sensing techniques that 

have been developed in this context.  

One-handed Discrete Gestures on Smartwatches 

For the most part, research on one-handed input for 

smartwatches has focused on trigger discrete commands. 

Among this class includes techniques such as pinch (e.g. 

thumb touching the other fingers) [1, 4, 10, 13, 21, 26, 36] 

and different hand postures (e.g. fist or thumb-up) [10, 11, 

24, 36]. A variety of sensing techniques have been developed 

to detect these gestures, many of which can be well 

integrated into a smartwatch form factor. Perhaps the earliest 

work in this category is GestureWrist [24], a technique that 

uses an array of capacitive sensors to detect the changes in 

forearm shape to inform different hand postures. Fukui, et al. 

[11] and Ortega-Avila et al. [22] demonstrated that forearm 

shape can also be sensed by using an array of infrared photo 

reflectors placed inside the wristband. More recently, 

WristFlex [10] and Tomo [36] showed that sensing 

capability can be improved by using force resisters or 

electrical impedance tomography (EIT) sensors.  

Acoustic sensors have also been effective in detecting pinch 

gestures. For example, Skinput [13] uses an array of contact 

microphones (e.g. piezo sensors) worn on the upper arm to 

detect sound waves generated by the fingers tapping each 

other. Amento et al. [4] showed that a single piezo sensor 

placed in a wristband can help detect finger taps or rubs, 

similar to the gestures that can be detected by the commercial 

product, Aria [1]. Other approaches include using EMG 

sensors [2, 17, 26] and cameras [7, 21], which all require the 

sensor to be either worn on the upper arm or on other body 

parts, thus being less practical to smartwatch users.  

An important aspect of using minimalist gestures, such as 

pinch or a simple hand posture to interact smartwatches is 

the ability to maintain a stable screen during the gesture to 

ensure constant visual contact with the display. Although, 

techniques like Android’s wrist gesture or even shaking the 

watch may also be used to trigger commands, they are 

limited to eyes-free scenarios, where visual contact with the 

screen is non-essential. Any input technique for 

smartwatches needs to maintain screen stability for 

continuous feedback and interaction.  

One-handed Continuous Gestures on Smartwatches 

In contrast to the discrete gestural input, little work has 

produced techniques for one-handed continuous gestural 

input on smartwatches. While existing methods were 

originally developed for a different set of applications that 

may be used in this context, there are limitations which may 

prevent them from being used effectively by smartwatch 

users. For example, Crossan, et al. [9]’s work uses the 

smartwatch as a motion sensing device to track the degree of 

wrist pronation to control the movement of a cursor in 1D on 

a handheld device. To detect the same pronation gesture, 

Strohmeier, et al. [27] proposed to attach a pair of stretch 

sensors to the skin of the forearm, which can also be used to 

detect the bend motion of the wrist for 1D gestural input. 

Rahman et al. [23] systematically studied the number of 

distinguishable levels in each of the wrist tilt axes. In 

principle, the same concept can be applied to control a 2D 

cursor to allow the users to draw common touchscreen 

gestures by tilting the watch screen in the x and y axes. This 

is a technique that has been developed in the past for 

handheld devices [8, 14, 23, 30]. Note that tilting the body of 

the smartwatch may lead to loss of visual contact with the 

screen as it moves away from the user’s view. This makes 

such an approach unusable for tasks requiring visual 

attention [23]. Similarly, translating the watch like a 

peephole display [16, 35] may also be used to control the 

cursor but the same problem remains unsolved. Additionally, 

moving the watch may largely impact task completion time 

[16]. We designed our technique to particularly overcome 

this limitation and allow the screen of the smartwatch to 

remain relatively stable when the gesture is being drawn. 

Micro-gestures [21, 33] may be used for one-handed input as 

well. Resent research has shown the possibility of using a 

wrist-mounted camera [18, 29] to capture the movement of 

the thumb on the other fingers, which in principle can be used 

for drawing gestures. However, using a camera may 

significantly impact the form factor of the smartwatch and 

may drain the battery quickly. On the other hand, Soli [20] 

requires the sensor’s active region to face the fingertips, thus 

not suitable for one-handed interaction in a smartwatch.   

The most relevant work to our research is that of Voyles et 

al. [28], who proposed to use the wrist as a joystick for 

steering a robot. The authors developed a data glove 

equipped with magneto-resistive sensors to detect the 

joystick motion of the wrist movement. While wearing a data 

glove may be acceptable for domain specific applications 

(e.g. controlling the movement of a robot), it can be 

inconvenient and inappropriate for smartwatch users and 

general consumers. In contrast, the sensor we developed can 

be integrated into the watchband thus having much less 

impact on the smartwatch form-factor. Finally, there is a lack 

of understanding of the usability of the wrist’s joystick 

motion for input on smartwatches and in different mobile 

environments (including mobility or distractions). Table 1 

summarizes the existing work in the design space of one-

handed input on smartwatch using wrist-worn sensors. 



 

 

 Discrete Gesture Continuous Gesture 

Screen 

Unstable 

Shake the watch 
Android Wrist Gesture 

Pronation (1 DOF) [9, 27] 
Peephole (2DOF) [16, 35] 

Tilt the screen (2DOF) [8, 

14, 23, 30] 

Screen 

Stable 

Finger pinch [1, 4, 10, 
13, 21, 26, 36] 

Hand posture [10, 11, 

22, 24, 36]  

 
 

WristWhirl (2DOF) 

 

Table 1 Existing work and design space of one-handed 

interaction on smartwatches. 

WRIST AS JOYSTICK 

The wrist is one of the most flexible joints in the human 

body. It can rotate along the forearm in both directions (e.g. 

pronation and supination). It can also bend along the plane 

of the palm (e.g. flexion and extension) or the one that is 

perpendicular (e.g. ulnar and radial deviations) to the palm 

(Figure 2). Previous studies suggests that the maximum 

range-of-motion for each moving axes are approximately 60° 

and 45° for flexion and extension respectively, 15° and 30° 

for ulnar and radial deviations respectively, and 65° and 60° 

for pronation and supination respectively [12]. These fairly 

wide ranges-of-motions could be used to turn the wrist into 

a “joystick” for smartwatches input using the same-side hand 

The joystick motion available while whirling the wrist can 

be mapped to continuous events on a smartwatch, such as 

drawing uni-stroke gestures such as flicks or different 

shapes. Since the maximum range-of-motion of the wrist is 

highly asymmetric due to the constraints imposed by the 

structure of the tendons, muscles, and bones of the forearm, 

the ability to draw multiple gestures with varying levels of 

complexities needs careful examination.  

 

Figure 2. Whirling the wrist consists mainly of ulnar/radial 

deviations (top) and extension/flexion (bottom). 

DESIGN CONSIDERATIONS 

We present several factors that need to be considered for 

designing continuous one-handed input for smartwatches 

and which guided our exploration.  

Screen Stability 

Smartwatches already suffer from a limited display real-

estate. Using the wrist as a joystick could mean rendering the 

screen quickly out-of-view for a given action. While it is 

impossible to completely eliminate screen movement when 

a gesture is drawn, our goal is to ensure this new input 

modality can minimize screen oscillations in comparison to 

methods that rely on tilting the watch for input. While other 

feedback modalities are possible, such as watch vibrations, 

when the gesture is accurately detected, we consider it 

important to have the screen in a reasonable viewing range 

to provide the same degree of fidelity as in touch interactions.   

Eyes-free Input 

Although screen viewing range is a key design consideration, 

many instances of smartwatch use could also benefit from 

eyes-free interaction. This could be in meetings, or during 

intense user activity, like a workout. Eyes-free input could 

also be driven by policies so as to minimize screen contact 

while driving or activities requiring the user’s full attention. 

Therefore, intuitive mappings of wrist gestures to actions are 

needed to reduce user’s dependence on full visual contact. 

Control and Display Mapping 

When an on-going gesture needs to be visualized on the 

watch display, the control and display mapping can be 

provided using either position- or rate-controlled mode. With 

position-control, the physical range of the wrist is mapped to 

actions on the screen, and the direction and amount of the 

wrist bend has a one-to-one mapping to the position of the 

on-screen visual cue (e.g. the trace of a gesture).  Position 

control reinforces feedback via proprioception of the hand’s 

orientation, allowing users to develop muscle memory for 

eyes-free interaction. In contrast, with rate-control, a cursor 

is needed and moves at a speed proportional to the direction 

and bend of the wrist. The cursor’s rate of movement 

increases with the degree of wrist bend, i.e. more the hand is 

bent from its neutral pose, the faster the cursor moves. Rate-

control mode is used in [28] but its control mechanism varies 

considerably from direct input on touchscreen devices. To 

minimize cognitive overhead in switching from direct touch 

to wrist gesture, we only explore position-control mode. 

Gesture Delimiter 

Explicit wrist gestures to trigger a smartwatch interaction 

need to be differentiated from normal wrist movements. 

Dwell can be used, but it can be less efficient. Another 

approach includes using only distinguishable movements 

that do not occur in normal day-to-day hand movements. 

While this method does not require a gesture delimiter, the 

number of usable wrist gestures is limited. Alternatively, a 

dedicated gesture can explicitly start and/or the end of a 

gesture. The delimiter can be a continuous gesture (e.g. a 

directional mark) or a discrete one (e.g. a finger pinch) but it 

needs to be reliable and easy to perform [25]. The latter 

approach requires an extra sensor for pinch detection but has 

the potential benefit of saving power (described later). In our 

implementation, we implemented the pinch delimiter using a 

simple sensing mechanism. 

EXPLORING THE WRIST AS A JOYSTICK CONTROLLER 

We conducted a study to investigate the bio-mechanical 

ability of the wrist to effectuate joystick-like gestures. We 

deem it an important first step to validate the feasibility of 



 

 

this new input method. We were particularly interested in 

measuring the efficiency and precision of such an input 

system as well as the amount of screen deviation caused by 

whirling the wrist.  

Participants 

Fifteen participants (2 females) between the ages of 20 and 

30, all right-handed and daily computer users volunteered.  

Gesture Set 

To understand the ability to gesture using full wrist motion, 

we grouped gestures into two types [6]: 1) marking gestures; 

and, 2) free-form shape gestures. Marking gestures are 

directional strokes, are analogous to flicking a touchscreen, 

and are common for navigating large workspaces (e.g. a map 

or long list). Free-form shape gestures involve more complex 

shapes and can be rotationally invariant. For the directional 

marks, we included the horizontal and vertical strokes as well 

as two 45° strokes towards left and right (Figure 3 left). For 

the free-form path gestures, we chose four gestures from the 

gesture set shown to be useful on touchscreen devices [31, 

32] (Figure 3 right). To ensure diversity, we picked the free- 

form gestures with straight lines and corners of different 

degrees (e.g. triangle and rectangle), one with a curvature 

path (e.g. circle) and one that is a mix of a curve, straight line, 

and corner (e.g. question mark).  

  

Figure 3. The eight tested unistroke gestures. The black dot 

indicates the start of the gesture. 

Task and Procedure 

In each trial, a gesture was shown to participants, who were 

then asked to reproduce the gesture as accurately and as fast 

as possible using their left wrist. A computer mouse was used 

on the right hand to indicate the start and end of a gesture just 

so that our study was not confounded by the implementation 

of the gesture delimiter (the delimiter we implemented in our 

prototype is described below, in the WRISTWHIRL 

PROTOTYPE section). Participants pressed and held the left 

mouse button to start drawing. Releasing the mouse button 

indicated the end of the gesture.  

Participants were asked to perform the gestures in two 

different postures, hand-up and hand-down (Figure 4). In the 

hand-up condition, participants held the watch in front of 

their chest and with the hand-down condition, participants 

were required to have the watch hand hang naturally 

alongside the body. The former condition allows us to 

examine by how much the watch screen is titled during a 

whirl action, while the latter enables us to examine eyes-free 

input. When the watch was held in front of the chest, 

participants saw the gesture trace they were drawing on the 

watch screen. When the watch hand was hung alongside the 

body, no visual feedback was given, the gestures were drawn 

eyes-free. A computer monitor was placed in front of 

participants to show them the current gesture they needed to 

draw. The monitor turned blank after a trial started.  

Finally, participants were also asked to perform the gestures 

while standing and walking. Similar to [6], in the Walking 

condition participants had to coordinate hand gestures while 

moving on a motorized treadmill at a speed of 3km per hour. 

At the start of the experiment, participants were asked to 

practice gesturing using the wrist for as long as they wanted. 

Before each trial, one of the eight gestures was shown to the 

participant on both the watch and a monitor. On a left mouse 

button click, the watch display turned into an empty canvas 

with a black cursor on it. Participants were then instructed to 

hold down the mouse button and start drawing the gesture. 

Upon finishing the gesture (e.g. the mouse button was 

released), a new gesture was presented to the user. This 

process was repeated until all trials were completed at which 

point participants were asked to fill-in a questionnaire. 

 

Figure 4. Hand postures: hand-up (left) and hand-down (right). 

Apparatus 

Wrist motion was captured using a Vicon motion tracking 

system (Figure 4) to ensure that results of the study are 

minimally affected by hardware implementation. The wrist 

gesture was transferred into the cursor movement on a 2D 

plane by projecting the position of the marker placed on the 

back of the hand onto the 2D plane perpendicular to the 

forearm. The trace of the cursor movement was shown on the 

watch screen as long at the mouse button was held. The 

mouse was mounted on the handle on the right side of the 

treadmill to make it easy for participants to reach. Finally, 

our custom-made smartwatch consisted of a 2” TFT display, 

used as an external monitor of a ThinkPad x1 Carbon laptop 

(Intel Core I7 2.1 GHz, 8 GB RAM) running the experiment 

software, which was written in C# .NET. 

Study Design 

The experiment employed a 2×2×2 within subject factorial 

design. In each trial, participants performed tasks in one of 

each Gesture Type (mark or path) × Mobility (standing or 

walking) × Hand Posture (hand-up or hand-down) 

combination. Each condition was repeated 10 times. For the 

conditions involving bidirectional marks, participants were 

asked to draw the mark in either direction (e.g. left to right 

or right to left in the horizontal condition) for half of the 

repetition. The conditions were counter-balanced among 

participants and the order of the gestures was randomized. 

The experiment design can be summarized as: 2 Gesture 

Types × 4 gestures per type × 2 Mobility × 2 Hand Postures 

× 10 Repetitions × 12 Participants = 3840 gestures.  



 

 

Results and Discussion 

We analyzed the data using a repeated-measures ANOVA 

and Bonferroni corrections for pair-wise comparisons. 

Task Completion Time 

Time was recorded when the mouse button was pressed and 

until the button was released. ANOVA yielded a significant 

effect of Gesture Type (F1,11 = 276.37, p < 0.001) and Hand 

Posture (F1,11 = 6.9, p < 0.05). There was no significant effect 

of Mobility (F1,11 = 2.36, p = 0.153). We found a significant 

interaction effect on Gesture Type × Hand Posture (F1,11 = 

9.43, p < 0.05), indicating that a hand posture affected time 

differently for marks and free-form paths. 

Overall, participants spent on average 960 ms per gesture. As 

expected directional marks required less time (483 ms, SE = 

31) to draw than free-form paths (1436 ms, SE = 67) (Figure 

5). An interesting finding is that task completion time was 

not affected by walking or standing but participants could 

perform wrist gestures faster with the hand alongside the leg 

(877 ms, SE = 41) than with the hand held in front of the 

chest (1043 ms, SE = 64). Our observation suggested that 

participants tended to slow down a bit to ensure that they 

could draw the gestures more precisely when they saw the 

visual feedback. This is particularly true for free-form paths.  

 
Figure 5. Task time shown by Gesture Type and Hand Posture. 

Task time completed using Vicon (left) and our prototype 

(right) (Error Bars show 95% CI in all figures). 

Screen Deviation and Stability 

Wrist gestures can lead to loss of visual contact with the 

smartwatch screen or cause a blurred view of the screen 

content. To assess the degree of screen movement and sway 

we captured two metrics: screen translation and screen 

oscillation. The average translation distance T (Equation 1) 

simply measures the amount of screen movement in 3D 

space during the course of a gesture. It is defined as the sum 

of the distances from the current screen position (pi) and the 

screen position at the start of a gesture (p0) over the course 

of the gesture, divided by the length of the gesture (n points). 

𝑇 =  
∑ 𝐷𝑖𝑠𝑡(𝑝𝑖,   𝑝0)𝑛

𝑖=0

𝑛
        (1) 

The average screen oscillation O (Equation 2) measures how 

much the path of screen changes direction over the course of 

a gesture. Considering the path of the screen as a series of 

between-point vectors, O is defined as the sum of the angle 

between the two adjacent vectors (vi and vi+1) over the course 

of the gesture, divided by the length of the path in n-1 

vectors. If the screen keeps shaking (e.g. moving back and 

forth), it will continually change direction (e.g. 180°), which 

will lead to a very high O value. 

𝑂 =
∑ |𝐴𝑛𝑔(𝑉𝑖,   𝑣𝑖+1)|𝑛

𝑖=0

𝑛−1
                     (2) 

Screen translation distance. ANOVA yielded a significant 

effect of Gesture Type (F1,11 = 29.7, p < 0.001) and Mobility 

(F1,11 = 174.15, p < 0.001). There was no significant effect of 

Hand Position (F1,11 = 1.19, p = 0.3). We found a significant 

interaction effect on Gesture Type × Mobility (F1,11 = 31.86, 

p < 0.001), which indicates that Mobility had more of a 

negative impact on translation distance for the free-form 

paths than directional marks. Overall, the average screen 

translation distance was 17 mm per gesture. The screen 

moved less with the directional marks (14 mm, SE = 1.5) 

than free-form paths (20 mm, SE = 1.3). It is worth noticing 

that most screen movements occurred while walking (24 

mm, SE = 1.7) than standing (9 mm, SE = 1).  

Since the major impact of screen translation occurs when the 

visual feedback is provided, we further investigate the effect 

of dependent variables when the hand was held in front of 

the chest. ANOVA revealed a similar trend as the one above. 

Overall, when the screen was held in front of the user, 

average translation distance was 16 mm. In particular, 

directional marks caused less translation (13 mm, SE = 1.5) 

than free-form paths (19 mm, SE = 1.2). There was also less 

translation in the standing condition (9 mm, SE = 1) than in 

the walking condition (23 mm, SE = 1.7) (Figure 6 left). Note 

that 23 mm deviation in the position of the watch still allows 

the screen to stay inside the user’s view. However, if the 

screen shakes considerably, visual information becomes 

blurry. We thus looked into the stability of the screen using 

the screen oscillation metric. 

Screen oscillation. We only analyzed the data when the hand 

was held in front of the chest. ANOVA yielded a marginal 

effect of Gesture Type (F1,11 = 4.86, p = 0.05) and significant 

effect of Mobility (F1,11 = 8.18, p < 0.05).  

Overall, we found the screen oscillation to be 18°. This is the 

average change in the screen movement direction, which 

shows no back-and-forth movement of the watch screen 

caused by the wrist motion. In particular, the oscillation was 

slightly higher for the direction marks (18.7°, SE = 1.1) than 

for the free-form paths (17.4°, SE = 0.8). We also found less 

oscillation in the standing condition (14.7°, SE = 1.8) than in 

the walking condition (21.3°, SE = 1.1) (Figure 6 right).  

 

Figure 6. Mean translation distance and screen oscillation 

shown by Gesture Type and Mobility (Hand Position = Up) 



 

 

Accuracy Analysis 

We analyzed the gesture recognition accuracy for free-form 

paths and directional marks separately. For the free-form 

paths we were interested in the overall the shape of the 

gestures but for the directional marks we were also interested 

in the accuracy of their drawn direction as it is very common 

in smartwatch interaction (e.g. swipe). 

Free-form path recognition accuracy. We used the $1 

gesture recognizer [31] to measure the accuracy of the free-

form paths drawn using WristWhirl. The result of a 12 fold 

cross-validation revealed that on average the $1 gesture 

recognizer was able to correctly recognize 93.8% of the 

gestures. Recognition accuracy was higher when the data 

was collected in the standing condition (95.1%) than in the 

walking condition (92.4%) (p < 0.05). There was no 

significant difference between the two hand postures (p = 

0.87). Surprisingly, Question mark received the highest 

accuracy (100%), which was significantly higher than Circle 

(90.2%), Rectangle (90.8%), and Triangle (94%) (all p < 

0.001). One reason might be that the Question mark gesture 

is not carried out at the limits of the wrist range-of-motion. 

Effect of individual differences. To further investigate the 

consistency of the gestures drawn across all participants, we 

processed each participant’s data through the gesture 

recognizer trained with the remaining participants’ data. The 

result showed an average accuracy of 92.2%. This value is 

similar to that obtained above (only slightly lower than the 

overall accuracy of 93.8%), suggesting that the tested 

gestures could be drawn correctly using the wrist as a 

joystick. To further confirm how well the gestures are drawn, 

we manually inspect their visual appearances.   

Gesture visual quality. The gesture recognizer can only 

distinguish different gestures without knowing if they are 

drawn consistently right or wrong. Therefore, we recruited 

three paid volunteers to visually inspect the 1920 free-form 

paths that were collected from the study. The inspectors were 

unaware of the purpose of the study and were asked to 

identify the shape of the gestures in isolation of each other. 

For each gesture, the inspectors had to choose one that best 

matched the shape of the presented gesture from a list of 

eight figures, among which four of them were distractors 

with similar shapes. For example, “7” was chosen to confuse 

with the “Question mark”, “diamond” was chosen to confuse 

with the “Rectangle”, “b” and “Pigtail” were chosen to 

confuse with the “Triangle” and “Circle”. Adding these 

distractors allowed us to further ensure the quality of the 

correctly identified gestures. 

The result showed that the inspectors were able to correctly 

identify 85% of the gestures. Notice that 74% of the errors 

occurred when the distractors were chosen instead of the 

desired gesture. For example, the “Pigtail” was chosen 

instead of the “Circle” when the two ends of the path crossed 

each other. Figure 7 shows an example of the common 

missed interpretation of the free-form gestures.  

 

Figure 7. Examples of miss interpreted gestures by the 

inspectors (left). Se in relation to two horiztontal marks (right). 

The red dotted line is the fitted model.  

Accuracy of directional marks. We evaluated the accuracy 

of directional marks based on how straight the marks were 

drawn as well as how close the marks were to the desired 

direction (e.g. horizontal, vertical, 45° slash and backslash). 

For each directional mark, we used a linear regression to 

generate a straight line to fit the points of the gesture. We 

then used the standard error (Se) of the regression (Equation 

3) to describe how well the model has fitted the data. The 

smaller the value of Se, the better the fit. For example, Se 

equals zero when the mark is a straight line. Finally, we 

calculated the absolute value of the angle between the 

generated model and the ideal mark to measure angular error.  

𝑆𝑒 =  √
1

𝑁−2
 ∑ (𝑦𝑖 −  �̂�𝑖

2)2𝑁
𝑖=1                   (3) 

Overall, the result revealed an average standard regression 

error of 5.4 and an average angular error of ±9.4°. Pair-wise 

comparisons showed that participants could draw the vertical 

mark more straight (Se = 2.9) than the horizontal mark (Se = 

4.6), both of which were more straight than the slash (Se = 

6.8) and backslash mark (Se = 7.35) (all p < 0.05 except for 

the slash and backslash). While hand position did not have a 

significant effect on Se (p = 0.53), participants were able to 

draw directional marks more straight when standing (Se = 

4.9) than walking (Se = 5.9) (p < 0.05). Figure 7 (right) gives 

a brief idea about the relationship between Se and the 

“straightness” of two horizontal marks.  

With respect to the angular error, vertical marks had the least 

angular error (±6.14°) (p < 0.05), followed by the horizontal 

(±9.6°), backslash (±9.8°) and slash (±11.9°) marks. No 

significant difference was found among them (all p > 0.05). 

We also found no significant difference between the two 

mobility conditions (p = 0.14) and hand postures (p = 0.12). 

Overall, this result highlights the ability of participants to 

draw straight lines with good accuracy in most direction by 

using the wrist as a joystick.  

Subjective Ratings 

To assess the physical exertion of using WristWhirl to 

perform gestures, participants were asked to rate each 

gesture on the Borg CR10 Scale [5]. Overall, the directional 

marks were rated easy to perform (avg. = 2.1) whereas the 

free-form paths were rated moderately (avg. = 3.6) (Figure 

8). Swiping vertically was considered very easy as all the 

participants rated it lower than 2. Rectangle was considered 

somewhat difficult where more than 58% of our participants 

gave it a higher grade than 5 (e.g. hard). Figure 8 shows the 

ratings for all the eight gestures. We also asked participants 

to rate the acceptance of WristWhirl in different settings. The 



 

 

result showed that participants considered it socially 

acceptable to use wrist gestures in front of people (3, with 1 

being strongly acceptable and 10 being strongly 

unacceptable) although they felt more comfortable to use 

wrist gestures in private (avg.=1.4). 

 

Figure 8. Perceived exertion rating of the tested wrist gestures. 

Overall, the promising results show that common 

touchscreen gestures can be drawn using the wrist’s joystick 

motion for occasional use. We also demonstrated that 

drawing gestures did not lead to significant screen deviation 

in its position. Nor did we find that the screen shook 

significantly during the course of a gesture. An interesting 

observation is that muscle memory was commonly used by 

participants in guiding their wrist trajectories. Participants 

commented that while visual feedback was definitely helpful 

in the training phase to help them develop correct muscle 

memory, it becomes less important when they know how to 

draw with wrist. This might explain why hand posture did 

not affect the quality of the gestures as much as we expected.  

DEVICE IMPLEMENTATION OPTIONS 

Results from the first study led to exploring sensor 

alternatives for realizing the range of potential wrist whirl 

motions. We aimed at developing a self-contained, 

smartwatch form-factor prototype. In this section, we present 

the device’s implementation options in terms of different 

sensor options, sensing resolution, and options for sensing 

delimiter. We also discuss the advantages and disadvantages 

of the various hardware alternatives.  

Sensor Options 

Several options exist for choosing an appropriate sensing 

mechanism to enable our input mechanism. For example, an 

array of proximity sensors (either infrared or ultrasonic 

proximity sensor) placed on the watch strap can be used to 

detect the flexion, deviation, and extension of the wrist by 

measuring how close the bent hand is to the watch. 

Alternatively, strain gauges can also detect how much the 

wrist is bent. However, strain gauges require physical contact 

with the base of the hand to sense the bend motion, thus 

requires the watch to be placed close to the palm. This could 

lead to discomfort. Additionally, sensing accuracy depends 

on the proximity of the strain gauge to the base of the hand. 

As a watch’s position always shift during use, this approach 

is prone to errors. Cameras might also be used to detect wrist 

motion. Similar to proximity sensors, the placement of 

cameras along the forearm is not constrained to how close 

the sensor is placed to the base of the hand. However, 

running multiple cameras and processing video streams may 

consume significantly more power than the above options. 

After considering the pros and cons of the above options, we 

decided to use the proximity sensor.  

Sensing Resolution  

Fine-grained sensing resolution is preferred but it would be 

difficult to achieve the level of resolution of a Vicon motion 

tracking system. With the existing sensor options, each 

single proximity or strain gauge sensor can serve as a sensing 

pixel. Thus, the sensing resolution of the final unit is also 

dependent on the physical size of the sensor: the smaller the 

sensor, the more can be installed on the strap, to provide a 

higher resolution. In reality a compromise is necessary to 

achieve a balance between the sensing resolution, the 

smartwatch physical form factor, and power consumption. 

Gesture Delimiter 

We decided to use a dedicated delimiter sensor to detect the 

start and end of a gesture (e.g. finger pinch). Using a decided 

delimiter sensor can lead to significant power conservation 

as it allows the wrist motion sensors to be only turned on 

when a pinch is detected. The motion sensors can be turned 

off upon the end of a gesture. The pinch sensor needs to be 

self-contained in the smartwatch form factor thus requiring a 

small size. Few options exist for such a sensor. For example, 

the smartwatch’s built-in IMU sensor may be used to detect 

the pinch gesture but it may be power consuming and prone 

to motion noise. A skin-contact piezo is equally an option. 

The piezo sensor detects the sound of the finger pinch 

propagating through the user’s skin [4], which has been 

shown effective in detecting pinch in an arm band form 

factor [13]. Piezo is also extremely efficient on battery life. 

We thus decided to use a piezo.  

 

Figure 9. The WristWhirl prototype. 

WRISTWHIRL PROTOTYPE 

To explore one-handed interactions enabled by wrist whirl 

gestures we created a proof-of-concept system, WristWhirl. 

The prototype is made of a 2” TFT display and a plastic 

watch strap augmented with 12 infrared proximity sensors, 

each composed of a pair of IR emitters and detectors (LITON 

LTE-301 & 302), placed on the strap in approximately 0.4 

cms apart from each other (Figure 9). The proximity sensor 

operates at 940nm, thus differentiating its signal from visible 

light. It has a maximum sensing distance of approximately 

12 cm. Our test showed that adjacent sensors did not interfere 

with one another. The sensors were connected to an Arduino 

DUE board, which was then connected to a Lenovo 

ThinkPad x1 Carbon laptop, reading the sensor data at a 



 

 

speed of 9600 Hz. The Arduino provides readings from 0 to 

1023 with 1023 being the closest proximity. 

Pinch detection was implemented using a piezo vibration 

sensor (Minisense 100) placed inside the wrist strap (Figure 

9). The user can pinch to indicate the start of a gesture, which 

turns on the proximity sensors to capture the wrist motion. 

Upon finishing the gesture, the user can do another pinch to 

indicate the end of the gesture. This turns off the proximity 

sensors to save battery. 

Device calibration. Calibration is needed for different 

lighting conditions. The user needs to rotate the wrist in a 

circular motion similar to drawing a circle, at least once 

(more rotations only incrementally improves recognition). 

This process calibrates the sensor with the maximum range 

of motion for each of the wrist’s moving axes.  

Since the wrist’s maximum range of motion is asymmetric 

along different axes, performing the circular motion by 

banding the wrist to its limit will result in a kidney-shaped 

gesture rather than a circle. It is thus a design decision 

whether we want to keep the resulting gesture a kidney shape 

or map it to a circle, in which case, the points drawn near the 

boundary of the wrist’s range of motion will be scaled 

towards that circle, making the gesture look slightly 

stretched. We decided to go with the circle as it may be what 

people expect to see.    

Another purpose of the calibration is to normalize the sensor 

readings with the magnitude of the inferred noise in the 

environment. We implemented a simple method to allow the 

user to skip the calibration phase if the environmental noise 

is similar to a previously recorded value (e.g. ±20 of each 

sensor’s reading). This way the system can use the data from 

a previous calibration. Therefore, recalibration is only 

needed when lighting conditions change significantly. 

Tracking algorithm. We treat the data from each proximity 

sensor as a vector, the direction of which is determined by 

the location of the sensor along the watch band. The length 

of the vector is determined by the value of the sensor. The 

higher the value, the longer the vector. The direction and how 

much the wrist is bent is detected from the sensor with the 

highest reading. As the sensors were placed in close 

proximity to each other, it is almost the case that more than 

one sensor can observe very high readings. In this case, we 

take the data from three consecutive sensors, which in total 

provides the highest value among all the consecutive triplets. 

We then take the summary of the three corresponding 

vectors, the direction of which estimates the tilt direction of 

the wrist. The length of this vector will exceed the highest 

reading of the proximity sensor (e.g. 1023). We adjust its 

length based on the readings of its two direct adjacent sensors 

using linear interpolation. The end point of the resulting 

vector is the position of the wrist in 2D space (represented 

by a cursor). The hand’s neutral position is detected when the 

greatest difference among the sensor values becomes lower 

than a threshold (e.g. 50), in which case, the resulting vector 

is the sum of all 12 sensor vectors and the cursor stays near 

the middle of its active region. We found this simple method 

worked well to estimate the wrist’s joystick motion while the 

user may need to adjust the wrist movement to accommodate 

this slightly different control-to-display mode.   

WRISTWHIRL USAGE SCENARIOS 

We implemented four applications using off-the-shelf games 

and Google Maps to illustrate the potential usage scenarios 

of WristWhirl. All the applications require continuous input 

and are normally used by both hands. Gesture Shortcut 

showcases gesture recognition, and the other applications all 

take the advantage of two dimensional continuous control to 

provide a richer and more expressive interaction.  

Gesture Shortcuts 

We implemented a gesture shortcut app (Figure 10), which 

allows the user to launch favorite smartwatch applications by 

drawing gestures. This is similar to the popular gesture 

search app on smartphones [19]. However, we allow it to be 

used on the smartwatch by using one-handed interaction. In 

our current implementation, the user can launch the calendar 

app by “drawing” a triangle. Similarly, the user can use 

gestures to speed dial a number. For example, the user can 

draw an “L” to call Lisa.  

 

Figure 10. Drawing a triangle to launch a calendar app. 

Music Player 

Using discrete commands [1] to navigate a long list of songs 

can be tedious as only one item in the list can be advanced 

per action. With WristWhirl a long wrist-swipe allows the 

user to quickly skip a number of songs whereas a short wrist-

swipe advances one song at a time. We implemented a music 

player app, in which the users can use wrist extension/flexion 

to scroll a list of songs (Figure 11). The user can double tap 

the thumb and index finger to play the selected song. Notice 

that we use double tap to distinguish between selection and 

a gesture delimiter (a single pinch). This approach to 

scrolling can allow the user to navigate a list eyes-free, with 

the simple addition of audio feedback.  

 

Figure 11. Wrist extension flips a list of songs to the left 



 

 

2D Navigation 

WristWhirl allows 2D panning and zooming by using one 

hand. In our implementation of a map application, the user 

can use wrist ulnar/radial deviation to pan up or down and 

extension/flexion to pan left or right. That is when the watch 

screen is held horizontally in front of the chest, gesturing 

towards the body pans the map down, gesturing upwards 

pans the map left, and vice versa (Figure 12). The user can 

control the panning distance with the length of a gesture. 

Whirling the wrist in the counter-clockwise direction zooms 

in the map. Alternatively, whirling the wrist in the clockwise 

direction zooms out. Double tapping the thumb and index 

switches between the two modes. The user can use the same 

interaction technique to navigate a photo album or webpage. 

 

Figure 12. Panning achieved with ulnar/radial deviation (left) 

and zooming a map made possible by clockwise and counter-

clockwise whirls (right). 

Game Input 

Playing games often requires continuous input for the best 

gaming experience. In our implementation, the user can play 

Tetris by swiping the wrist left and right. Wrist extension is 

used to change orientation and wrist flexion is used to drop 

the piece (Figure 13). Notice that the user’s dominant hand 

is now free to perform simple tasks, such as picking up a 

phone, without interrupting the game. This type of input can 

also be used for other games. For example, the user can whirl 

the wrist to play Fruit Ninja.  

 

Figure 13. Playing Fruit Ninja (left) and Tetris (right)  

PRELIMINARY SYSTEM EVALUATION 

We conducted a preliminary system evaluation to verify the 

accuracy of our prototype. We were interested in knowing 

how well users employ our prototype to create gestures. 

Ideally the evaluation would be conducted using the VICON 

motion tracking system as a baseline. We found it difficult in 

practice as both system use infrared for illumination. As a 

result, the infrared light from the VICON interfere with the 

proximity sensors of our prototype. At the current stage, we 

decided to only evaluate our prototype by measuring how 

well the gestures can be drawn by using our prototype. 

Participants and Apparatus 

We recruited 12 participants between the age of 20 and 30 

(10 male). 7 of them participated in Study 1. We used the 

same setup as in Study 1, but instead of the Vicon our 

prototype tracked the wrist motion.  

Task and Procedure 

Participants were asked to perform the same set of gestures 

as in Study 1 except that they only did the study in the 

standing position with their hand being held in front of the 

chest. At the beginning of the study, participants had to 

calibrate the prototype and practice for about 20 minutes. 

The Gesture Type was counter-balanced among participants. 

The study had the same procedure as in Study 1 except that 

at the end of the study, participants had the opportunity to try 

five demo apps discussed above and provide feedback. 

Result 

Task completion time. On average, it took the participants 

560 ms to perform the directional marks and 1767 ms to 

perform the free-form gestures. A comparison of the task 

completion time between the WristWhirl and Vicon (both in 

hand-up and standing conditions) using an independent-

sampled t-test revealed a marginal difference for the 

directional marks (e.g. Vicon: 546 ms) (t958 = 1.29, p = 0.05) 

and significant difference in the free-form path gestures (e.g. 

Vicon: 1564 ms) (t958 = 6.67, p < 0.001). WristWhirl was 

slower than Vicon because our prototype was not as sensitive 

as the Vicon when the wrist was near the natural position 

(e.g. slightly tilted). Participants thus needed to slightly exert 

more tilt in our prototype for the sensor to pick up the wrist 

motion. This led to larger gestures and longer task 

completion times. Figure 5 shows a side-to-side comparison 

of the gesture completion time using the VICON motion 

tracking system (left) and our prototype device (right).  

Free-form path recognition accuracy. The result of a 12 

fold cross-validation showed that on average the $1 gesture 

recognizer was able to correctly recognize 95.4% of the free-

form paths drawn using our prototype. A t-test showed that 

the recognition accuracy for WirstWhirl is significantly 

higher than for the Vicon (92.5%; t958 = 1.89, p < 0.001).  

Accuracy of directional marks. With respect to the 

accuracy of the directional marks (e.g. straightness), the 

result showed an average standard error of regression of 

1.56, which is significantly lower than the Vicon (5.23, t958 

= -17.58, p < 0.001). The average angular error was 7.3°, 

which is also significantly lower than the Vicon (9.8°, t958 = 

-5.18, p < 0.001). Figure 1 right shows an example of a few 

gestures collected in this evaluation.  

These results suggest a comparable performance of our 

prototype as with the Vicon. We attribute this advantage to a 

mixed reasons. Learning from the first study could be one 

factor but it should be minimal as the two studies took place 

three weeks apart. The prototype also used a different 

tracking algorithm, which may also contribute to accuracy. 

Subjective feedback. Overall, participants welcome the idea 

of using the wrist gesture for one-handed interaction on 

smartwatches. While some of them felt it a bit awkward to 

use at the beginning, they all liked it after they learned how 



 

 

the device operated. A participant commented that “I think it 

is quite easy to use” (P8). As expected participants thought 

it would not be very comfortable to exert the wrist for long 

time periods but all see the value of WristWhirl as an 

alternative input method for occasional use. A participant 

said “It is very helpful when the other hand is carrying some 

very heavy bags!” (P5). Participants also enjoyed our demo 

apps and saw themselves using some of the apps in their daily 

life. For example, a participant said that “I like the map 

application very much” (P7). Another one said that the 

“Music Player is so cool and helpful!” (P1). Most of the 

participants preferred the simple directional gestures over the 

free-form paths. They all liked the Fruit Ninja app but most 

preferred playing the game on a larger touchscreen device. 

They could also envision playing Tetris with WristWhirl. 

DISCUSSION AND LIMITATIONS 

We discuss the insights gained from this work, the lessons 

we learned, the limitations of our approach, and present 

directions for future research.  

Learnability 

While many of our daily activities already involve wrist 

motion with various degrees of complexity or cognitive 

levels (e.g. low when using a spatula and high when 

controlling the swing of a tennis racquet), drawing 

touchscreen gestures using the wrist’s joystick motion is not 

something people can master without learning. This is 

mainly attributed to the inconsistency between people’s 

perceived gesture that a certain wrist motion may produce 

and the actual gesture the wrist motion produces. For 

example, a horizontal line often ended up being drawn as a 

flat “v” shape in the initial stages of training as participants 

did not realize that they were moving the wrist in a curved 

trajectory. This is also due to the lack of visual reference on 

the forearm to guide the movement of the wrist in a desired 

way. The outcome of learning, however, is noticeably 

encouraging. Participants were excited about how well they 

can draw the touchscreen gestures with the wrist. For 

example, a participant commented that “I am amazed by how 

much I can do with my wrist” (P3) and another participant 

said that “I now see myself using it to interact with a watch” 

(P11). To reduce training length one could adapt the system 

to match what users ‘think’ they are drawing (e.g. a 

horizontal line can be produced if the user is drawing a flat 

“v”). Future work will explore this direction. 

User Evaluation  

The presented user evaluation is limited in that we only 

tested a small set of common free-form paths. Future 

research will study more different paths (e.g. in curved/spiral 

shapes). While the goal of our study was to show evidence 

to support wrist whirls as a new input modality, more work 

is needed to understand the usability of this input style in 

real-world practice, in which unexpected uncertainties may 

influence the result and may possibly lead to a different 

conclusion. Finally, a longer-term study can help tease the 

memorability of wrist gestures. 

System Implementation and evaluation 

The proximity sensor is robust against visible light but it 

could be interfered with by the infra-red noise in the 

environment. In addition to natural daylight, there exists 

many infra-red light sources in office and home 

environments (e.g. security cameras). A possible way to 

avoid the inference from ambient light is to modulate the 

light signal in a certain frequency. Future research will test 

this method in a real-world environment. Additionally, our 

current implementation only works for one particular wrist 

size. We will explore alternative design options to facilitate 

a wide range of input with different wrist sizes. Pinch 

detection can also be improved. The current method may 

trigger false pinch events when the index taps a hard surface 

such as typing on a keyboard. Future work will focus on 

studying different delimiter options. Finally extra haptic 

feedback, such as Skin Drag Displays [15], can further 

facilitate eyes-free input.  

Multi-touch gestures  

Our system does not support multi-touch gestures. 

Therefore, common gestures such as two-finger scrolls 

cannot be performed using WristWhirl. Future research will 

explore potential methods that can enable multi-touch style 

continuous input using one hand. 

CONCLUSION 

One-handed interaction on smartwatches is challenging as 

existing ways of using discrete input actions, such as pinch, 

do not support 2D continuous gestural input. While other 

approaches such as tilting the watch may be used for 

continuous input, such approaches are prone to losing visual 

contact with the display when the screen is tilted away from 

the user. In this paper, we propose to use the wrist as an 

always-available joystick to perform common touchscreen 

gestures using the same-side hand wearing the watch. We 

describe a number of design considerations in designing this 

new input style. Through a user study we measure how fast 

and precise gestures can be drawn using the wrist’s joystick 

motion in two hand postures and while walking or standing 

still. We also measured the amount of screen movement 

during the course of a gesture. The results we obtained from 

observing the bio-mechanical influences of wrist whirls led 

to the development of a proof-of-concept prototype in the 

form of a wristband, with which we demonstrated a number 

of applications that can potentially benefit from one-handed 

continuous input on smartwatches. We believe that our work 

serves as important groundwork for exploring one-handed 

interaction techniques on smartwatches. 
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