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ABSTRACT 
We present Tessutivo, a contact-based inductive sensing 
technique for contextual interactions on interactive fabrics. 
Our technique recognizes conductive objects (mainly 
metallic) that are commonly found in households and 
workplaces, such as keys, coins, and electronic devices. We 
built a prototype containing six by six spiral-shaped coils 
made of conductive thread, sewn onto a four-layer fabric 
structure. We carefully designed the coil shape parameters to 
maximize the sensitivity based on a new inductance 
approximation formula. Through a ten-participant study, we 
evaluated the performance of our proposed sensing 
technique across 27 common objects. We yielded 93.9% 
real-time accuracy for object recognition. We conclude by 
presenting several applications to demonstrate the unique 
interactions enabled by our technique.  
Author Keywords 
Inductive Sensing; Interactive Fabrics; Object Recognition 
CSS Concepts 
• Human-centered computing - Human computer interaction 
(HCI); 
INTRODUCTION 
Input through interactive textiles have found numerous 
applications in clothing, fashion, furniture, toys, and even 
vehicles [13, 35, 48, 52]. Thus, it is foreseeable that objects 
that are already made or covered by soft and lightweight 
fabrics may become an important part of daily digital life in 
the near future. However, with current sensing techniques on 
interactive fabric, user input is limited to either touch [30, 35, 
40] or deformation of the fabric [32, 48]. As a result, 
opportunities for several new interactions techniques have 
thus been missed.  

In this paper, we explore a technique using contact-based 
inductive sensing for contextual interactions on interactive 

fabrics. Our technique is based on the precise detection and 
recognition of conductive objects (mainly metallic) that are 
commonly found in households and workplaces, such as 
keys, coins, and electronic devices. Our technique allows a 
context embedded object to be sensed by the interactive 
fabric, when the object is in contact with the fabric. Using 
this information, a desired application can thus be triggered 
to respond. For example, a sofa is capable of detecting if a 
user has left their keys on it after they’ve left. An empty 
tablecloth can remind the user to set up eating utensils before 
guests arrive for dinner. Aside from object recognition, our 
technique can also sense the coarse movement of the contact 
area of the object itself, allowing a new dimension of input 
to be carried out through gestures.  

We developed a proof-of-concept prototype (called 
Tessutivo) to demonstrate technical feasibility and new 
applications enabled by our technique. Our prototype 
contains a grid of six by six spiral-shaped coils made of a 
conductive thread, sewn onto a four-layer fabric structure. 
The size and shape of the coils were carefully designed to 
maximize the sensitivity to objects of different materials and 
shapes. The optimization was performed based on a new 
mathematical model developed to approximate coil 
inductance, which is a direct measure of sensor sensitivity. 
We tested our prototype using 27 common objects that were 
a mix of conductive objects and non-conductive objects, 
instrumented using low-cost copper tape. Results from ten 
participants revealed 93.9% real-time accuracy for object 
recognition. 

 
Figure 1. Tessutivo is an interactive fabric that can detect 
conductive objects placed on it. 

Our contributions are: (1) an object recognition technique for 
interactive textiles that uses inductive sensing; (2) a 
procedure that can optimize the design of sensor coils to 
maximize sensitivity; (3) a study evaluating the accuracy our 
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sensing technique; and (4) several applications to 
demonstrate the unique interactions enabled by our 
technique.  
RELATED WORK 
We briefly discuss prior research into input on interactive 
fabric, sensing techniques for object recognition, and 
inductive sensing.  

Input on Interactive Fabric 
With the current state-of-the-art, user input on interactive 
fabrics is mainly performed through touch [30, 35, 40] or 
deforming the fabric itself [32, 48]. The enabling technology 
behind these innovations can be mainly divided into those 
using capacitance [26, 34, 35], resistance [20, 30, 31, 40, 52], 
and optics [13, 45].  

The class of work utilizing capacitive sensing is largely 
based on fabric capacitors made of conductive materials 
acting as electrode plates. On a piece of fabric, the electrodes 
can be created using conductive threads or inks. Musical 
Jacket [34], from MIT exemplifies an early exploration in 
this field. The authors used stainless steel yarns to embroider 
a capacitive touch keypad on denim. Meyer et al.’s work [26] 
describes a multi-layer capacitive textile sensor that can 
precisely detect input through pressure. A more recent work, 
Project Jacquard [35], describes the design and fabrication of 
a new type of conductive yarn that can be woven into textiles 
using standard looms at scale.  

The approaches using resistive sensing are based on fabric 
resistors. A common structure of the sensor in this category 
includes two conductor layers separated by a semi-
conductive middle layer. eCushion [52] is an example, which 
has a middle layer made by a semi-conductive material (e.g., 
yarn coated with piezoelectric polymer) sandwiched by a top 
and bottom layer made by fabric coated with parallel 
conductive buses. Applications for this type of sensor are 
wide. For example, eCushion [52] was developed for 
detecting sitting postures. GestureSleeve [40] is an 
interactive sleeve that allows a user to use touch gestures to 
interact with computing devices on the forearm. proCover 
[20] uses a similar type of sensor [31] to augment prosthetic 
limbs. New methods are also being researched to improve 
resistive sensing technology. For example, Parzer et al.’s 
method can reduce the sensor layers from three to one via a 
new type of yarn comprised of a metallic thread with a 
resistive coating [30].  

In the space of interactive fabric, object recognition has been 
largely overlooked. To the best of our knowledge, the most 
relevant work is from Rofouei, et al. [37], who proposed to 
use pressure profiles (e.g., weight and shape) to distinguish 
objects on a piece of fabric. However, without an evaluation 
of object recognition on interactive fabric, it is hard to 
understand how well this technique works. Our inductance-
based approach primarily relies on the material of the object 
and is based on contact not pressure. This allows the sensor 

to be used in scenarios where weight may not be a reliable 
indication of an object’s identity.  

Object Recognition 
Within existing research, object recognition can be achieved 
using two approaches, with the main difference in the need 
for target objects to be instrumented. 

The approach of relying on instrumentation requires the 
target objects to be tagged. Radio frequency identification 
(RFID) tag is an example which is used in a large number of 
object recognition applications [2, 5, 15, 21, 22, 36, 42]. NFC 
tags is another option, which was used in research projects 
like Capacitive NFCs [12] and Zanzibar [47]. In the 
commercial market, optical solutions like QR codes have 
been widely used to encode information about different 
products [17]. iCon [8] uses the vision based approach for 
tangible input through daily objects using pattern stickers. 
Although instrumenting target objects is generally an 
effective approach in many application domains, the 
limitation is obvious as the objects must be tagged, or the 
technology will not work.   

Technologies without the requirement of using tags often 
rely on computer vision [24], which requires an object to be 
visible and privacy can be a concern for using cameras [3]. 
More recently, mechanical or electronic properties of the 
target objects (e.g., EM signatures, vibration patterns, etc.) 
are also exploited. For example, acoustics-based approaches 
(e.g. [33, 50]) recognize objects that can emit a sound. EM-
Sense [19] recognizes electrical objects via the 
electromagnetic signals emitted from the objects. ViBand 
[18] recognizes objects through patterns of different 
mechanical vibrations. Radarcat [53] uses multi-channel 
radar signals to recognize electrical or non-electrical objects. 
However, object recognition on soft fabric is overlooked. 
Sensing Techniques Based on Induction 
Inductive sensing has been used in many applications, 
including position sensing [14, 29, 44] and the detection of 
defects in metal objects and structures [46]. As for object 
recognition, Maekawa, et al. [25] used magnetic sensors and 
coils to recognize electrical objects. Wang, et al. [49] used 
magneto-inductive sensors to recognize electrical objects via 
electromagnetic radiation. More recently, ID’em [6] is a 
tagging method that employed an array of inductive sensors 
to identify objects instrumented with conductive dots. 
Indutivo [11] used inductive sensing to enable contact-based, 
object driven interactions for input-limited devices like 
smartwatches. Guidelines were provided for the design and 
implementation of sensors coils to achieve an optimized 
sensing performance. Our work takes a similar approach but 
is instead on soft fabric. This imposes many new challenges 
that only exist on soft fabric. For example, sensor coils are 
created using conductive threads, which have very different 
physical and electronic properties than the copper wires used 
on a rigid substrate. Thus, knowledge developed previously 
becomes inapplicable to the coil design. We discuss how we 



overcame these challenges by generating a new set of 
knowledge that can be beneficial for future research.  

SENSING CONDUCTIVE OBJECTS  
Similar to Indutivo [11], Tessutivo can differentiate 
conductive objects that are either environmental or artificial. 
Environmentally conductive objects are common in 
everyday life, from the smartphone to the utensils on a dinner 
table that sit on a table cloth. Artificial conductive objects are 
those manually instrumented using conductive markers in 
the object’s contact area (Figure 2). By identifying the 
unique pattern of the conductive markers through its 
inductance footprint, the associated object can be recognized. 
This enabled us to increase the scope of object recognition 
on an interactive fabric. In this work, we used copper tape to 
create conductive markers to instrument both conductive and 
non-conductive objects. Unlike Indutivo [11], whose sensor 
coils were arranged in a 1D space, our work employs a 2D 
coil array, thus allowing us to design markers with even 
richer 2D geometry shapes.  

 
Figure 2. Left: (a) conductive markers created using copper 
tape. (b) folks with and without instrumentation. Right: (c) 
heatmap image of inductive footprint of rightmost marker. (d) 
heatmap images of inductive footprints of the fork and 
instrumented fork.   

SENSING PRINCIPLE 
Inductive sensing is a known technology for low-cost, high-
resolution sensing of electrically conductive (mostly 
metallic) objects. Its sensing principle is based on Faraday's 
law of induction, which can be described as the following: a 
current-carrying conductor can “induce” a current to flow in 
a second conductor. For example, when an alternating 
current (AC) is passed through a L-C resonator, comprising 
of an inductor (e.g., a spiral-shaped coil of the sensor) and a 
capacitor, it results in a time-varying electromagnetic filed. 
When a conductive object is brought into this 
electromagnetic filed, a circulating current known as an eddy 
current is induced on the surface of the conductive object. In 
turn, the induced eddy current generates its own 
electromagnetic field, which opposes the original magnetic 
field generated by the L-C resonator. Therefore, a shift of the 
resonant frequency of the L-C resonator can be observed, 
through a sensor, due to mutual inductance. According to 

formula (1), when the resonant frequency changes, the coil 
inductance changes accordingly. This forms the basis of our 
sensing technique: 

                                 𝑓𝑓0 = 1
2𝜋𝜋√𝐿𝐿𝐿𝐿

                                      (1) 

where 𝑓𝑓0  is the measured resonant frequency, 𝐿𝐿 is the coil 
inductance and 𝐶𝐶 is the capacitance of the known capacitor.  

The amount of the change in the resonant frequency or in 
turn the coil’s inductance, relates to an abundance of 
information about the conductive object, such as its size, 
shape, electrical properties (e.g., resistivity) and distance. 
We exploit this information for object recognition. A key 
component of inductive sensing is the design of the sensor 
coils, which should aim to reduce the inductance of the coil 
for improved sensitivity to different objects. This is because 
when the coil’s inductance is small, a tiny change in its 
inductance caused by a target object can be related to a more 
observable shift in the measured resonant frequency [11].  

Most conductive objects have capacitance and inductance, 
and both properties affect the resonant frequency. The effect 
of inductance dominates that of capacitance with most 
metallic objects. In contrast, the effect of capacitance 
becomes dominant with most non-metallic conductive 
objects, such as a finger. As a side effect, our system can also 
differentiate a finger from conductive objects due to the 
opposing influence on measured resonant frequency from 
both effects.  

FABRICATING SENSOR COIL  
Unlike the existing work [6, 11], where the sensor coils were 
printed on a rigid substrate, developing inductive sensing on 
a textile requires a different approach. We used conductive 
threads, which can be easily stitched on a fabric to spiral the 
coils using a home embroidery sewing machine (e.g., 
Brother SE600). In comparison to other options like printing 
[16], stitching creates traces that are mechanically stable and 
durable [10]. The shape patterns of the coils (e.g., shape and 
size) can be designed using graphics editing software (e.g., 
Microsoft Paint, Adobe Illustrator) and then saved into the 
embroidery file format using SewArt Embroidery Digitizer. 
This approach is simple and easy, even for novice makers. 

Two layers of coils is also possible by aligning two single 
layer coils back-to-back. However, this is not easy because 
the standard stitching process on a sewing machine pushes 
the conductive threads through the substrate, causing short 
circuits between the opposite-side coils. We overcame this 
challenge by adopting the method discussed in Dunne et. 
al.’s work [10]. We carefully tuned the tension of the top 
thread (e.g., non-conductive thread) to ensure that the 
conductive thread on the back only floated on the surface of 
the substrate without penetrating it. We then sewed the two 
layers together, with the coils well aligned, facing outwards. 
Finally, the opposite-sided coils need to be connected. This 
was done by connecting the spiral center together using twist 
splice. The connection was then fixed in place using a touch 



of hot glue for the sake of simplicity or the glue can be 
replaced using stitch. The coil layers are then sandwiched 
between two insulation layers to avoid the coils to be shorted 
by the conductive object (Figure 3). 

 
Figure 3. The four layer-combination of Tessutivo. 

CONDUCTIVE THREAD OPTIONS 
One of the major challenges in enabling inductive sensing on 
a soft fabric is the choice of the right conductive threads. 
First, the threads should guarantee a high conductivity, 
otherwise the self-resonant frequency of the coil may 
decrease to a level that intersects with the resonant frequency 
of the sensor (e.g., L-C resonator) [10]. This will cause 
serious jittering in the sensor signal, as we discuss later in 
this section. Second, the conductive thread should be thin. 
This is because thick threads are hard to sew using a standard 
home sewing machine up to the level of precision needed to 
make the coils. Amongst what is available on the market 
currently, only 4 candidates satisfied our needs (shown in 
Table 1), within which, all threads are made of stainless steel, 
except for the LIBERATOR 40, which is made of silver-
plated fiber. The conductivity of these candidates ranges 
from 3.28 to 91.84 Ω/m (e.g., all below 100 Ω/m). Although 
these threads are significantly more conductive than other 
threads which are available commercially, we were still 
unsure about whether they were good enough for our needs, 
as existing literature provided us with little insight into the 
conductivity requirement for the creation of sensor coils 
using conductive threads.   

Name LIBERATOR 
40 

Stainless thin 
thread 

Smooth 
conductive thread 

Conductive 
thread bobbin 

Manuf.  
/Distributor 

Syscom Adafruit Sparkfun Sparkfun 

Yarn Type Single twine Double twine Triple twine Double twine 

Material Silver coated 
polymer 

316L Stainless 
steel fiber 

12UM Stainless 
steel fiber 

316L 
Stainless steel 

fiber 

Thickness 
(mm) 

0.18 0.20 0.12 0.35 

Conductivity  
(Ω per m) 

3.28 51.18 27.00 91.84 

Table 1. Conductive Yarn Candidates. 

Thus, we conducted an experiment to test the signal stability 
of these different thread options (Figure 4). In our 

experiment, we used each of these threads to create a 
rectangular-shape coil (e.g., 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 = 30𝑚𝑚𝑚𝑚,𝑛𝑛 = 10, 𝑠𝑠 =
0.90𝑚𝑚𝑚𝑚, see parameter descriptions later) using a sewing 
and embroidery machine (Brother SE600). As we were only 
interested in knowing the effect of the thread material, we 
did not optimize the shape parameters of the coils in this test 
(discussed later). The substrate used in this test across all the 
thread options was Drill 40 Unbleached 17181 (100% 
cotton). The signals from the tested coils were measured 
using a Texas Instruments LDC1614 evaluation board for 
inductive sensing. We used software (i.e. Sensing Solutions 
EVM GUI) alongside the evaluation board to acquire sensor 
signal (e.g., sensor’s inductance).  

Our results revealed that only the LIBERATOR 40 was 
conductive enough to guarantee the stability of sensor signal. 
The sensor inductance measured from the stainless-steel 
threads were all extremely jittery. The highest variance 
observed reached up to ~1000uH, even without the presence 
of a conductive object. This was significantly higher than the 
normal range of 0.002uH, observed from the coils made of 
LIBERATOR 40. As discussed earlier, the jittering is mainly 
due to the lack of conductivity of the sensor coils. Therefore, 
we chose the LIBERATOR 40 for our sensor development. 
LIBERATOR 40 has a light-weight, flexible and high-
strength fiber core with a conductive metal outer layer, which 
is commonly used as shielding braid, bare wire, or is coated 
with insulation material.  

 
Figure 4. Four tested coils made of different conductive 
threads: (a) LIBERATOR 40, (b) Stainless thin thread, (c) 
Smooth conductive thread, and (d) Conductive Thread 
Bobbin. 

COIL DESIGN 
This section discusses (in several dimensions) how the 
design of sensor coils can be optimized around coil 
inductance in the context of interactive fabric.  
Coil Size and Layer 
As mentioned in the Sensing Principle section, our goal was 
to reduce coil inductance to improve the sensitivity of the 
sensor to different objects. In practice however, the 
minimum coil inductance is bound by the working range of 
the inductance-to-digital converter. For example, the 
LDC1614 chip has a lower bound at around 1.49uH with 
suggested 680pF capacitor (or 5MHz in resonant frequency), 
below which sensor signals become unstable (as suggested 
by [11]). Therefore, the most suitable coil design for us is 
one that has a coil inductance of around 1.49uH, but not 
smaller. 

Aside from coil inductance, our application has a constraint 
in the size of the coil as a small and dense grid of coils 



enables a greater sensing resolution in a 2D space, for both 
detecting object movements on the fabric surface, as well as 
sensing the shape of the object’s contact area, which is useful 
for gestural input using a conductive object. Therefore, our 
goal was to design the coil to be the smallest in size without 
violating the inductance requirement. 

Once we achieved these goals, coil size can be further 
reduced without decreasing coil inductance using a multi-
layer design (e.g., 2, 4, 6 layers). Therefore, in this work, we 
used a two-layer design. Although more layers are possible, 
we considered two to avoid the fabric to be too thick. Finally, 
optimizing the other parameters can help further minimize 
coil size without reducing coil inductance.  

Coil Shape 
In principle, a coil can be made into any shape, but the most 
common ones are square, hexagon, octagon, and circle 
(Figure 5). The shape of a coil mainly affects sensing 
distance and sensing area. The circular shape has the best 
quality factor and lowest series resistance [1], thus allowing 
the largest possible sensing distance among the four options 
[27]. Alternatively, a rectangular shape has the largest 
sensing area per coil unit in a 2D space. For our application, 
sensing distance should be kept small to avoid false positives 
while the sensing area should be kept large to maximize 
sensing region. We thus used the rectangular shape for our 
sensor.  

 
Figure 5. Four common designs of planar spiral coil: (a) 
square, (b) circle, (c) hexagon, and (d) octagon. dout and din are 
outer and inner diameters respectively. 

Coil Shape Parameters  
Once the shape is determined, the shape parameters need to 
be optimized to achieve the desired inductance.  

For a given shape, a coil can completely be specified by the 
number of turns (n), width of trace (w), trace spacing (s), and 
any one of the following: the outer diameter 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜, the inner 
diameter 𝑑𝑑𝑖𝑖𝑖𝑖 , the average diameter, defined as 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 =
(𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑑𝑑𝑖𝑖𝑖𝑖)/2  and the fill ratio, defined as 𝜌𝜌 = (𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 −
 𝑑𝑑𝑖𝑖𝑖𝑖)/(𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑑𝑑𝑖𝑖𝑖𝑖) (Figure 5) 

If the value of each shape parameter is determined, the coil 
inductance can be calculated in theory using the sheet 
approximation formula [38]. However, the challenge here 
was that this formula was designed for coils made from 
copper and does not work for silver plated fiber, whose 
electronic properties vary significantly. Therefore, we 
constructed our own formula. We did so by using curve 
fitting, similar to a previously used approach [28].   

Inductance approximation formula for single-layer coils 
For the single-layer design, we used the monomial fitted 
inductance equation proposed by Mohan et al. [28]:  

                     𝐿𝐿𝑠𝑠𝑖𝑖𝑖𝑖𝑎𝑎𝑠𝑠𝑠𝑠 =  𝛽𝛽𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜
𝛼𝛼1 𝑤𝑤𝛼𝛼2𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎

𝛼𝛼3 𝑛𝑛𝛼𝛼4𝑠𝑠𝛼𝛼5                  (2) 

where 𝐿𝐿𝑠𝑠𝑖𝑖𝑖𝑖𝑎𝑎𝑠𝑠𝑠𝑠  is the inductance of the coil of a certain design, 
which can be measured using an LCR Meter; 𝑤𝑤 is a constant 
value indicating the width of the conductive thread (e.g., 
0.18mm for LIBERATOR 40); 𝛽𝛽  and 𝛼𝛼𝑖𝑖  are unknown 
coefficients specific to the LIBERATOR 40 thread. Their 
values were determined by identifying the best fit to the 
measured inductance values of a set of known coil designs. 

To capture data for curve fitting, we used five different 
values for 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 , ranging from 10mm to 30mm, with a 
constant interval of 5mm. We also used five different values 
for spacing 𝑠𝑠, ranging from 0.54mm (3 × 𝑤𝑤) to 0.90mm (5 
× 𝑤𝑤), with an interval of 0.09mm (0.5 × 𝑤𝑤). Note that the 
typical spiral coils are built with 𝑠𝑠 ≤ 𝑤𝑤  to maximize the 
interwinding magnetic coupling [28]. However, this is 
extremely hard to achieve on a fabric using stitching. 
Therefore, s started from 0.54mm (3 × 𝑤𝑤)  in our study.  

As suggested by [28], we iterated all possible numbers of 
turns (n) that could lead to the coil designs satisfying the 
requirements of 0.1 ≤ 𝑑𝑑𝑖𝑖𝑖𝑖/𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 0.9 . Note that the 
relationship between number of turns (n) and 𝑑𝑑𝑖𝑖𝑖𝑖  can be 
determined using the following formula. 

                  𝑑𝑑𝑖𝑖𝑖𝑖 =  𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 − 2(𝑛𝑛 − 1)(𝑤𝑤 + 𝑠𝑠) − 2𝑤𝑤            (3) 

In total, we came up with 229 different coil designs for data 
fitting, each representing a 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑠𝑠 × 𝑛𝑛  combination. We 
stitched the coils on the Drill 40 substrate using the Brother 
sewing machine. The inductance (𝐿𝐿𝑠𝑠𝑖𝑖𝑖𝑖𝑎𝑎𝑠𝑠𝑠𝑠) of each design was 
measured manually using a DE-5000 Handheld LCR Meter.  

A logarithmic transformation was used on both sides of the 
equation (4), before a least squares fitting was used to fit the 
data. The resulting approximation formula is:    

                   𝐿𝐿𝑠𝑠𝑖𝑖𝑖𝑖𝑎𝑎𝑠𝑠𝑠𝑠 =  0.001 ∙ 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜−0.7𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎2 𝑛𝑛1.7𝑠𝑠−0.2              (4) 

The R-squared and root-mean-square error for this model is 
0.995 and 0.088 respectively, indicating that the model fits 
the testing data well.  

Inductance approximation formula for multi-layer coils 
In a multi-layer design, the total inductance (𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑠𝑠) of the 
coils in series (e.g., the two opposite-side coils), can be 
calculated using formula (5) [39].  

            𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑠𝑠 =  ∑ 𝐿𝐿𝑖𝑖 + 2 ∙ (∑ ∑ 𝑀𝑀𝑗𝑗,𝑚𝑚
𝑁𝑁
𝑚𝑚=𝑗𝑗+1

𝑁𝑁−1
𝑗𝑗=1 )𝑁𝑁

𝑖𝑖=1          (5) 

where N is the number of layers (2 in this case). 𝑀𝑀𝑗𝑗,𝑚𝑚 is the 
mutual inductance between the coils, which is defined as 𝑘𝑘 ∙
�𝐿𝐿𝑗𝑗 ∙ 𝐿𝐿𝑚𝑚, in which, Lj and Lm are the inductance of layer j 
and m, which can be calculated using equation (4). The 
parameter 𝑘𝑘 is the measure of the flux linkage between the 
coils, whose value varies between 0 and 1. According to 



Zhao’s work [54], 𝑘𝑘 is only related to number of turns (n) 
and a relative constant thickness of the fabric substrate (e.g., 
1mm in the case of two Drill 40 substrates). Thus, 𝑘𝑘 can be 
described using the following formula: 

                     𝑘𝑘 =  𝛾𝛾 ∙ 𝑖𝑖2

0.64∗(1.67𝑖𝑖2−5.84𝑖𝑖+65)
                        (6) 

where 𝛾𝛾  is the unknown coefficient, which could also be 
found using a least squares fitting. Within the 229 coil 
designs we used to find the equation for the single-layer 
coils, and for each possible 𝑛𝑛 (e.g., from 2 to 19), we chose 
those with the largest, smallest and medium inductances, 
which were then stitched into two Drill 40 substrates and 
sewn together. The inductance  𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑠𝑠  of each design was 
measured manually using a DE-5000 Handheld LCR Meter. 
After fitting, the resulting approximation formula for a two-
layer design is shown in Formula (7) with: 

       𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑠𝑠 =  𝐿𝐿1 + 𝐿𝐿2 + 2.27𝑖𝑖2

0.64∗(1.67𝑖𝑖2−5.84𝑖𝑖+65)
∙ �𝐿𝐿1𝐿𝐿2     (7)            

The R-squared and root-mean-square error for this model is 
0.992 and 0.49 respectively, indicating that the model fits the 
testing data well. We used this model to guide the 
optimization of our final coil designs.  

Final Coil Design 
With formula (7), our goal was to traverse all 7165 possible 
design solutions, calculate the theoretical inductance value 
for each candidate, and narrow down the search by 
identifying the smallest coils with an inductance of around 
1.49uH. Table 2 shows the finalist.  

Outer 
Diameter 

(mm) 

Trace 
Spacing 

(mm)  

Turns Approx. 
Inductance 

(uH) 

Real  
Inductance 

(uH) 

Real 
Resonant 

Frequency 
(MHz) 

13 0.54 8 1.605 1.507 4.972 
13 0.55 8 1.572 1.475 5.025 
13 0.56 8 1.539 1.428 5.107 

Table 2. Coil designs that satisfied our needs. The one 
highlighted in the first row was chosen. 

We implemented all candidates in our shortlist by stitching 
them on the Drill 40 substrate. The inductance values of the 
designs were measured using the LCR meter. Our result 
revealed that the inductance of all the candidates in the 
shortlist were around 1.49uH but only one had a value higher 
than 1.49uH, which satisfied our requirement. This suggests 
that our model is mostly effective but still lacks in precision, 
which was expected. Figure 6 shows the final coil design 
developed in our prototype.  

THE EFFECT OF FABRIC SUBSTRATES 
Before we implemented our prototype, we conducted a 
preliminary evaluation to understand if the material of the 
fabric substrates has an effect on a coil’s inductance. Since 
the effect of the thickness of the substrates is known, this 
experiment only focused on the material. This is why we 
used a single-layer version of the sensor. Among the 
numerous options available in the market, we chose six 
representatives made from polyester, lyocell, nylon, modal 

rayon, Bemberg rayon, and cotton, as they are commonly 
used in garments, toys and furniture (Table 3).  

Table 3. Different types of substrates we tested in the study. 

We used our final coil design in single layer and stitched five 
coils on each tested substrates (Figure 6). We then measured 
inductance of the 25 sensors using the LDC1614 evaluation 
board. There was no observable difference between the 
average sensor data obtained from the five substrates, which 
suggested that substrate material had a neglectable effect on 
sensor signal (Table 3). For our prototype, we chose the Drill 
40 Unbleached 17181 (100% cotton) due to the wide 
adoption of cotton in fabric materials and relatively small 
variance [9]. 

 
Figure 6. Coils on the six different types of substrates: (a) 
Polyester, (b) Lyocell, (c) Nylon, (d) Modal Rayon, (e) 
Bemberg Rayon, and (f) Cotton. 

CUSTOMIZED SENSING BOARD 
We built our customized sensing board (Figure 7) using a 
Cortex M4 micro-controller (MK20DX256VLH7) powered 
by Teensy 3.2 firmware. The board has four 4:1 multiplexers 
(FSUSB74, ON Semiconductor), an inductive sensing chip 
(LDC1614, Texas Instruments), a power management 
circuit, and a Bluetooth module (RN42, Microchip 
Technology). The sensing board can now drive at most 8 × 8 
coils. We used two multiplexers to control the columns of the 
coils and another two to control the rows. Our prototype 
employed a 6 × 6 grid layout of coils (Figure 7).  

Note that we did not use a multiplexer with more input 
channels (e.g., 8:1 or 16:1). This is because there is a side 
effect of having extra input channels - increased on-
resistance (Ron) and on-capacitance (Con), which may cause 

Name Lp Satin 
Solid 
Black 
17120 

Dark 
Wash 
17330  

Ripstop 
18189 

White 
Modal 
16360 

Black 
Ambience 
18081 

Drill 40 
Unbleach
ed 17181 

Manuf.  Glitterbug DENIM Utility 
Fabric 

DENIM Lining Utility 
Fabric 

Material 100% 
Polyester 

100% 
Lyocell 

100% 
Nylon 

100% 
Modal 
Rayon 

100% 
Bemberg 
Rayon 

100% 
Cotton 

Average 
Inductance 
(uH) 

0.478 
(s.e.= 
0.009) 

0.479 
(s.e.= 
0.022)  

0.455 
(s.e.= 
0.024) 

0.473 
(s.e.= 
0.020) 

0.456 
(s.e.= 
0.016) 

0.460     
(s.e.= 
0.006) 



serious jittering in the sensor’s signal. Our initial test 
suggested that in order for the LDC1614 to work properly, 
Ron and Con should be less than 10 Ω and 10 pF respectively. 
Among what is available commercially, few products satisfy 
this requirement. We thus decided to use a 4:1 multiplexer 
instead. Ron and Con of our multiplexers is 6.5 Ω and 7.5 pF 
respectively.  

The system has a sampling rate of around 300 Hz. All sensor 
readings were sent to a Macbook Pro laptop for data 
processing via Bluetooth. In total, the entire system 
consumes 250.5mW of power, including those consumed by 
the Bluetooth radio (99mW). With a 650mAh lithium-
polymer battery, the system can work for at least 2 hours.  

 
Figure 7. Tessutivo prototype and sensing board. 

WIRE CONNECTION 
The next challenge is to connect the coils to our sensing 
board. Connecting the conductive threads to rigid electronics 
is currently an open problem yet to be solved [30, 35]. A 
number of methods were used in previous research, which 
include using snap buttons, sewing, conductive epoxy, 
crimping and so on [4, 32, 35, 40]. In the case of 
LIBERATOR 40, the thread can be soldered directly under a 
certain temperature by following its datasheet. However, our 
tests found that solder heat made the tip of the thread (at its 
connection) extremely fragile, causing unreliable wire 
connections across the sensor grid. After iterating upon a 
number of different methods, such as snap buttons, we found 
the most effective and reliable method to connect the thread 
to an electric wire, was to use a splice shown in Figure 8. It 
was robust against stretching and folding. Once all the 
threads were connected to the electric wires, the connections 
needed to be fixed in place. We used a touch of hot glue in 
our implementation. Although a bit bulky in its current form, 
this type of connection was stable, durable, and performed 
well in our final experiment.  

 
Figure 8. Splice used to connect a conductive thread to a wire. 

OBJECT RECOGNITION 
Our system recognizes a conductive object by comparing its 
inductance footprint with a machine learning model trained 
using a pre-collected database of labeled references. In this 
section, we discuss our object classification pipeline.    

Data Processing 
When a conductive object is placed anywhere inside the 
sensor, the sensor reports a 6 × 6 array of inductance values, 
one from each coil. This data contains the 2D inductance 
footprint of the object, describing object material (e.g., 
resistivity) and low-resolution geometry information of the 
object’s contact area.  

Before object recognition is performed, the raw sensor data 
from each coil was smoothed using a low pass filter to reduce 
the fluctuations in sensor readings. The data was then 
mapped to a value from 0 to 255 using the peak value 
observed from each coil. Finally, we upscaled the sensor data 
from 6 × 6 pixels to a 100 × 100 heatmap image using linear 
interpolation. Figure 9 demonstrates an example of a Coke 
can and its corresponding inductance footprint shown in a 
heatmap image.  

 
Figure 9. The heatmap image of the inductance footprint of a 
Coke can. 

Machine Learning 
We used machine learning for object recognition. While 
there are many options for classification algorithms (e.g., 
Hidden Markov Models and Convolutional Neural 
Networks), many of them are computationally expensive, 
and thus were considered less suitable for real-time 
applications in low-power embedded platforms, like 
wearables [23]. In our implementation, we used Random 
Forest because it has been found to be accurate, robust, 
scalable, and efficient in applications involving small 
devices [7, 41, 43]. 

Feature Extraction 
Object recognition using inductive sensing is primarily based 
on two types of information, the material and 2D geometry 
of the contact area of the objects. Based on our observation 
and initial tests, we derived 81 features, shown in Table 4. 
We selected the features that are invariant to the location and 
orientation of the contact area of the object.  



Finger Detection  
With the presence of the finger, the inductance readings 
measured by the sensor increases slightly instead of 
decreasing due to the capacitance effect discussed before. So, 
we used a simple heuristic to identify the finger by checking 
whether sensor readings surpass a threshold chosen by a pre-
test.  

Shape-
Related 
Features  

(49 features) 

• Local Binary Pattern (36)  
• Hu Moments (7) 
• Object Area (1): Number of pixels the object covers 
• Object Edge (1): Number of pixels the object’s edge 
covers 
• Average Distance (4):  Average distance from 
object’s pixels to object’s center of gravity and 
geometric center (2), Average distance from object’s 
edge pixels to object’s center of gravity and geometric 
center (2) 

Material-
Related 
Features  

(32 features) 

• Statistical Functions (11): Mean, Variance, Max, 
Local Maximum Numbers, Median, Quantiles (3), 
Count above/below mean, Absolute Energy of the 
object’s pixel values  
• Entropy (1): Binned Entropy 
• Ten-Fold Stats (20): Sort and divide the object’s 
pixel values into 10 folds and average for each fold 
(10), Divide grayscale values (e.g., 0~255) into ten 
intervals and count the number of the pixels in each 
interval (10)  

Table 4. The feature set we extracted to train our ML model. 

SYSTEM EVALUATION 
We conducted an experiment to evaluate the performance of 
Tessutivo. The goal was to validate the object recognition 
accuracy of our prototype. We were also interested in 
evaluating sensor robustness against individual variance 
among different users. 

Participants 
10 right-handed participants (average age: 23, 8 males, 2 
females) were recruited to participate in this study.  

Objects 
We tested our prototype using 27 common conductive 
objects in households and workplaces to encompass a broad 
range of different properties (e.g., size, material, shape). The 
objects can be classified into four types: large or small 
objects and instrumented conductive or instrumented non-
conductive objects (Figure 10). Large objects had a contact 
area greater than the active sensing region of our system 
(e.g., the 6 × 6 grid). Some of were metallic, while others 
were electronic devices with built-in metallic components. 
Small objects had a contact area smaller than the sensing 
area. Instrumented conductive objects are those with a 
contact area instrumented using copper tape of 13 mm wide. 
Instrumented non-conductive objects are non-conductive 
objects with the contact areas instrumented using copper tape 
with different patterns.  

Study Procedure 
Three days prior to our study, training data was collected by 
a volunteer with the sensor that was powered by a wall outlet 
(earth ground). The sensor was put on a rigid table and a 
volunteer was asked to place an object on the sensor in 
random orientations and locations inside the sensing area. 
The only instruction the volunteer was given was to ensure 
the object’s contact area to be exposed to the sensor as much 
as possible. Sample data was collected 30 times per object. 
This volunteer was excluded from our final study.  

Prior to the start of the final study, participants learned tested 
objects and they also understood that the object’s contact 
area needed to be exposed to the sensor as much as possible. 
No other instruction or practice trial was given. The study 
protocol was similar to the one used in [18, 51], where a live 
object recognition study was carried out with 27 objects. 
Unlike putting the sensor on a rigid table in the training 
phase, participants were asked to place the tested objects on 
the seat of a sofa, instrumented with our prototype. We 
deliberately designed this procedure to evaluate how our 
collected object model worked in a more realistic setting, as 

Figure 10. The tested conductive objects. (A) candy box, (B) binder clip, (C) travel mug, (D) tip tinner box, (E) coil, (F) finger, (G) 
folk, (H) Coke can, (I) metal credit card, (J) spoon, (K) USB drive, (L) key, (M) Apple pen, (N) Surface pen, (O) Nexus 4 front, (P) 
Nexus 4 back, (Q) iPhone X front, (R) iPhone X back, (S) Kindle, (T) instrumented candy box, (U) instrumented binder clip, (V) 
instrumented folk, (W-Z, 𝜶𝜶) instrumented books. 



daily objects that are made or covered by fabrics are 
commonly soft (e.g., sofa, clothing, toys).  

Result 
Overall, an accuracy of 93.9% (s.e. = 0.69%) was achieved 
by our system. Figure 11 describes the confusion matrix for 
all objects described previously. Among the 27 tested 
objects, 24 objects achieved an accuracy higher than 90%. 
This is a promising result, as we purposefully included 
typical experimental procedures that impact recognition 
accuracy – no user training, no per-user calibration, large 
time gap between training data collection and the study itself. 
The confusion matrix revealed that the candy box was 
occasionally misclassified as a 5cm binder clip. This occurs 
when two objects are of a similar material (e.g., steel) are 
compared. This is further emphasized, when the contact area 
appears similar under the resolution of our current grid 
implementations.  

 
Figure 11. Object confusion matrices across 10 participants. 
Results are shown in percentage. 

It is exciting to see our system could classify an Apple Pen 
and a Surface Pen with a high accuracy (e.g., 98%), as these 
two objects share very similar contact areas but different in 
the electronics. It shows that our system could effectively 
distinguish objects with a similar shape but made of different 
materials. The instrumented non-conductive objects were not 
significantly confused with each other, indicating that the 
system could separate them only using the conductive 
patterns. Keys achieved the lowest accuracy (e.g., 86%) 
among all objects, as it was primarily confused with the 
spoon and USB drive. For some of these objects with a small 
contact area, the system could not reliably identify them 
because their inductance footprints appeared to be similar to 
each other again due to the relatively low resolution of our 
coil grid. The back of an iPhone X was also confused with 
the back of a Nexus 4. This is because both objects have a 
similar inner structure with electronics and PCBs.  
DEMO APPLICATIONS 
We propose four application examples on (1) a tablecloth, 
(2) in a pocket and (3) a backpack, to showcase possibilities 
and demonstrate Tessutivo’s sensing capabilities.  

The first application is a hydration tracker, which reminds a 
user of their daily water consumption when they are working 
at a desk. Placing a stainless mug (which we use to track) on 
a tablecloth starts a timer and a reminder is sent to the user’s 
phone if the mug stays at the desk longer than a pre-set time 
period (Figure 12 a).  

The second application relies on a pocket that is 
instrumented with Tessutivo. The pocket is capable of 
detecting if a user’s phone has slipped out of the pocket when 
they have gotten up and left from a sofa (Figure 12 b).  

Our third application combines the tablecloth and a backpack 
to provide unobtrusive contextual sensing. For example, 
when a user wants to read an ebook, they grab a kindle from 
a table, which causes the nearby floor lamp to switch on. 
After the user finishes reading and puts the kindle into their 
backpack, the lamp turns off automatically (Figure 12 c).  

Finally, our last application is also based on a tablecloth in a 
dining room. A family meal has been prepared by a mother 
and father, whom have finished cooking and are preparing 
the table. As they prepare the table, their children whom are 
on the second floor receive a message asking them to go 
downstairs and enjoy the meal (Figure 12 d).   

 
Figure 12. Tessutivo demo applications. 

LIMITATIONS AND FUTURE WORK 
In this section, we discuss the lessons and insights we learned 
from our experience. We also present limitations of our work 
and directions for future research. 

Inductance Formula. Our coil inductance estimation formula 
was derived based on LIBERATOR 40 with the goal of 
demonstrating the feasibility of inductive sensing on a soft 
fabric. Further investigation is currently underway to 
evaluate how well the derived formulas perform with other 
types of conductive threads. Therefore, our main 
contribution of this work is not the model. Rather, we see the 
procedure in the design and implementation of Tessutivo 
being the contribution that can be generalized beyond the 
present work and can provide useful guidance for future 
research in related fields.  



Fabric Losing Flexibility. The presented research optimized 
the coil based on size and sensitivity. We see it a fruitful 
research direction in the future to consider other parameters. 
Preserving the softness of the fabric substrate can be one 
important consideration in future explorations. With our 
current implementation, the threads are spiraled tightly 
inside a small area of the coil, which has made the substrate 
harder than it was before instrumentation. There is a tradeoff 
between the size of the coil and how well we can preserve 
the softness of fabric substrate. A larger coil with the threads 
loosely spiraled inside it may lead to an increase in softness 
but sensing resolution may decrease.  

False Detections upon Sensor Deformation. Sensor readings 
can be affected if the coil is deformed, which may 
consequently introduce false detections. Although, our lab 
study revealed no significant effect of deformation in 
recognizing the tested objects, we are planning to test 
Tessutivo in different usage applications and scenarios, such 
as jean pocket to investigate how robust the system can 
perform in a more realistic setting and identify areas for 
improvement.  

Contact Area. Objects are required to be in contact with the 
sensor for our current implementation.  Consequently, it can 
be extremely challenging for detection of objects that don’t 
have a planar contact surface, as inductance values may 
change as the contact area changes. However, this challenge 
can be overcome with additional training data since the 
change in the inductance is consistent with respect to how 
the object’s contact area may change.  

Sensing Non-conductive Objects. Our method does not work 
with non-conductive objects without instrumentation. This is 
a limitation of the induction-based approach. A hybrid 
approach integrating inductive sensing with the other types 
of sensing techniques, such as those based on pressure, is an 
interesting future direction to explore. Another possible 
direction to explore is examining how to make it easier for 
users to design, fabricate and instrument unique conductive 
markers on non-conductive objects. 

Content Inference. Some of the conductive objects might be 
containers (e.g., travel mug). A careful evaluation is 
necessary in the future for investigating the effect of the 
content within the container (e.g., water or coke).    

Finger Detection and Capacitive Sensing. Our current 
system only uses a simple heuristic to identify a finger, 
which may introduce false positives in real world settings. 
However, we believe that a machine learning based model 
can further improve the robustness. It is also interesting to 
further explore capacitive image sensing using Tessutivo, 
which may open up a broader interaction and application 
space.  
CONCLUSION 
This paper presents a contact-based inductive sensing 
approach on interactive fabrics to recognize daily conductive 
objects. We discuss the sensing principle and our 

investigation on different conductive threads and substrates. 
We built a prototype with a six by six coil array, which was 
carefully designed to maximize the sensitivity to conductive 
objects based on an approximate inductance formula derived 
for conductive thread. Through a ten-participant user study, 
we demonstrated that our approach yielded a 93.9% real-
time classification accuracy with 27 daily objects that 
included both conductive and non-conductive objects 
instrumented using low-cost copper tape. Our work presents 
a novel sensing methodology for object recognition on 
interactive fabrics. We believe it holds the potential to further 
enlarge the input space of interactive fabrics. 
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