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ABSTRACT 
We present Pyro, a micro thumb-tip gesture recognition 
technique based on thermal infrared signals radiating from 
the fingers. Pyro uses a compact, low-power passive sensor, 
making it suitable for wearable and mobile applications. To 
demonstrate the feasibility of Pyro, we developed a self-
contained prototype consisting of the infrared pyroelectric 
sensor, a custom sensing circuit, and software for signal 
processing and machine learning. A ten-participant user 
study yielded a 93.9% cross-validation accuracy and 84.9% 
leave-one-session-out accuracy on six thumb-tip gestures. 
Subsequent lab studies demonstrated Pyro’s robustness to 
varying light conditions, hand temperatures, and background 
motion. We conclude by discussing the insights we gained 
from this work and future research questions. 
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INTRODUCTION 
Micro finger gestures [13, 35, 54] offer new opportunities for 
natural, subtle, fast, and unobtrusive interactions in 
wearable, mobile, and ubiquitous computing applications. 
For example, gesturing the thumb tip against the tip of the 
index finger [13] is a natural method of performing input, 
requiring little effort from users because the index finger 
serves as a supporting surface to naturally provide haptic 
feedback. This motion introduces less fatigue over time 
compared with traditional gestural input methods, which 
often require moving the finger, hand, or even the entire arm 
in mid-air [28, 31, 56].  

Despite the known benefits of this new input modality, 
tracking fine-grained thumb-tip gestures remains very 
challenging due to the small magnitude of finger motions and 
frequent occurrences of self-occlusion. Existing studies have 
exploited magnetic sensing [13, 14], which achieves a 
relatively high tracking precision but requires fingers to be 

instrumented with magnets and sensors. The Soli project [35, 
54] explored the use of millimeter-wave radar to sense subtle 
finger movement without instrumenting the user. The active 
sensor’s energy consumption, however, is a concern, 
especially for small wearable devices (e.g., smart watches).  

In this paper, we propose an alternative approach that senses 
thermal infrared signals radiating from fingers to recognize 
micro thumb-tip gestures (Figure 1). We sense these signals 
using a passive infrared (PIR) sensor made of pyroelectric 
materials. A PIR sensor is highly sensitive to subtle motion 
and thus enables recognition of fine gestures. This passive 
sensing approach provides two unique benefits. First, by 
eliminating the need to generate active signals, the sensing 
technique itself is energy-efficient. It is preferable for small 
wearable devices. Second, the PIR sensor generates very 
little heat and thus requires no cooling [19]. It is an important 
benefit for wearable devices since cooling is a known 
challenge in engineering small consumer devices [47]. 

 
Figure 1. Sensing micro thumb-tip gesture using a PIR sensor. 

We demonstrate the technical feasibility through Pyro, a 
proof-of-concept prototype developed using a low-cost, off-
the-shelf PIR sensor (Figure 1). We augment the PIR with 
customized sensor electronics and optimize Pyro for 
detecting micro thumb-tip gestures performed close to the 
sensor. We test the system using six thumb-tip gestures: a 
triangle, rectangle, circle, question mark, check mark, and 
finger rub (Figure 3). Results from ten participants show 
93.9% cross-validation accuracy and 84.9% leave-one-
session-out accuracy. Additionally, our study provides 
insights into the robustness of this approach under 
environmental noises such as ambient light interference, 
hand temperature variations, and background hand 
movement. Our work provides the first evidence to support 
pyroelectric infrared sensing as a promising alternative for 
detecting micro finger gestures.  
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Our primary contributions include: 1) an approach to detect 
micro thumb-tip gestures using pyroelectric infrared sensing; 
2) development of a prototype using an off-the-shelf sensor 
and customized hardware and software; and 3) initial 
validation of this approach through a series of experiments.  
RELATED WORK 
In this section, we briefly summarize previous research 
based on various sensing techniques. 
Camera-based Sensing 
Camera-based approaches have shown good accuracy in 
tracking small finger motions. For example, 2D images of a 
hand in different angles can be used to query a database of 
existing hand models to find a best match [11, 53]. Recent 
work by Song et al. [46] shows a technique for 3D hand 
gesture recognition using a single 2D camera. Wrist-worn 
[31], finger-worn [12] and head-mounted [16] cameras have 
also been used to track small finger motions. In recent work, 
depth cameras have been widely used for improved 
accuracy. Much of the existing work uses machine learning 
classifiers to recognize hand postures [30, 45, 49, 50]. 
RetroDepth [32] took a different approach by sensing 3D 
hand postures using the silhouettes of the hands. Although 
tracking is precise, camera-based approaches have been 
criticized for being bulky and power consuming, making 
them hard to integrate into small wearable devices. 
RF Sensing 
RF signals (e.g., Wi-Fi, GSM, radar signal) have also been 
shown to be effective for detecting finger gestures. Coarse-
grained hand gestures (e.g., flick, slide, hover) can be sensed 
using Wi-Fi [29, 48] and GSM [66]. Mudra [64] is a fine-
grained finger gesture recognition system which senses 
finger motion using Wi-Fi signals. Soli [35] provides a 
promising alternative approach. The technology tracks very 
small finger movements using 60-GHz radar signals. Soli is 
capable of detecting 11 hand gestures [54], although only 
four of them are micro (pinch index, pinch pinky, finger 
slide, and finger rub). A common concern of 60-GHz radar, 
however, is power consumption, especially in the context of 
wearables. Compared to Soli, our pyroelectric infrared 
sensing is passive, which significantly reduces the power 
consumption.  
Pyroelectric Infrared Sensing 
Pyroelectric infrared sensors are sensitive to thermal 
radiation emitted by the human body (8 - 14 μm) [33]. Tiny 
deviations from the thermal equilibrium of the surrounding 
environment can be detected [33, 37]. Pyroelectric infrared 
sensing is commonly used in commercial applications to 
detect the presence of humans or trigger alarms. PIR sensors 
have also been explored for much more complex applications 
such as human localization [6-8, 20, 23, 27, 34, 39, 63, 67], 
motion direction detection [44, 60-62], thermal imaging [10], 
radiometry [41], thermometers [52], and biometry [8, 18, 19, 
21, 61]. Most prior work in this space has focused on 
detecting large and coarse-grained body movement 
happening at a relatively long distance from the PIR sensor 

(>~2m). For shorter-distance sensing, a 4×4 PIR sensor array 
has been used to identify hand motion in four directions at a 
distance of tens of centimeters [59]. In our work, we explore 
PIR sensing for detecting nearby micro and fine-grained 
thumb-tip gestures for wearable applications.  
Other Sensing Techniques 
Thumb-tip movements can also be sensed using magnetic 
sensors [13, 14]. The limitation of this approach, however, is 
the need to instrument the fingertips with magnets and 
sensors. Acoustic sensing [38, 55] also shows potential, but 
no existing system has demonstrated feasibility in 
recognizing thumb-tip gestures with micro finger movement. 
A variety of sensing techniques have been developed to 
detect the commonly-used pinch gestures (e.g., thumb 
touching the other fingers) [1, 9, 17, 26, 36, 43, 65]. 
GestureWrist [42] is one of the earliest examples, which uses 
an array of capacitive sensors to detect the changes in the 
shape of the forearm to identify different finger pinches. 
Recent research has shown that the forearm shape can also 
be detected using infrared photo reflectors [22, 40]. Sensing 
resolution can be further improved using pressure sensors 
[17] or electrical impedance tomography sensors [65]. 
SENSING PRINCIPLE 
PIR sensors are made of pyroelectric crystals, a material that 
generates a surface electric charge when exposed to heat in 
the form of infrared radiation. Commercial PIR sensors are 
typically tuned for human detection by adding a bandpass 
filter window which only passes the infrared wavelengths 
emitted by the human body (e.g., 8 - 14 μm) (Figure 2). In 
the presence of a thermal object (e.g., a finger), PIR sensors 
convert the thermal radiation into an electrical current 
proportional to the difference in temperature between the 
finger and the environment [33]. 

 
Figure 2. Pyroelectric infrared sensing principle. 

A PIR sensor commonly arranges two sensing elements side 
by side, connected to a differential amplifier to cancel 
common-mode noise caused by environmental temperature 
change, vibration, and sunlight, since these simultaneously 
affect both elements. When a finger passes by, though, it is 
observed by one element first and then the other, which 
causes a positive differential change between the two crystals 
(e.g., generating a sinusoidal swing). When the object 
crosses from the opposite direction, it intercepts the elements 
in a reverse order, thus generating a negative differential 
change (e.g., a flip of the sinusoidal swing). When the change 



in thermal infrared has stabilized between the two crystals, 
the signal returns to its baseline voltage. Thus, if the finger 
remains still, no output signal will be generated. PIR sensors 
are less responsive to motion towards or away from the 
sensor since the motion in z-axis causes a smaller difference 
in temperature between the two crystals (Figure 2).  

To make the sensor responsive to tiny movements, a Fresnel 
lens can be added to concentrate incoming radiation on the 
sensing elements (Figure 2). To further improve sensitivity, 
the Fresnel lens can be split into multiple zones, each with 
its own sub-lens focused on all sensing elements. The 
downside of using a multi-zone Fresnel lens, however, is that 
the finger’s movement direction cannot be reliably detected 
due to the mixture of multiple signals coming from different 
zones. Thus, we used a single-zone Fresnel lens for the Pyro 
prototype. 
GESTURE SET 
Thumb-tip gestures are performed by moving the thumb tip 
against the tip of the index finger, which is natural, subtle, 
fast, and unobtrusive [13]. While the design space of thumb-
tip gestures is large, we focus our exploration on free-form 
shape gestures carried out on the distal segment of the index 
finger as it is the most common and intuitive way to perform 
the gestures. Since drawing the thumb on the index finger 
resembles gesturing on a touchscreen, we choose five 
gestures from known unistroke gestures shown to be useful 
on touchscreen devices [57, 58] (Figure 3).  

 
Figure 3. Gesture set: (a) triangle; (b) check mark; (c) 
rectangle; (d) circle; (e) question mark; (f) finger rub. 

To ensure diversity, we picked unistroke gestures with 
straight lines and corners of different degrees (counter 
clockwise triangle, check mark, and counter clockwise 
rectangle), one with a curved path (counter clockwise circle) 
and one mixing a curve, straight line, and corner (question 
mark). We also added the finger rub gesture from [54]. 
Although this set of gestures is not exhaustive, it is so far the 
largest micro-gesture set that has been used to validate a 
sensing technique.  
PYRO IMPLEMENTATION 
We created a self-contained prototype using our customized 
hardware and software. This section describes our 
implementation details. 

PIR Sensor and Fresnel Lens 
We optimized our hardware for finger motion close to the 
sensor. To achieve this, we chose a single-zone Fresnel lens 
(IML-0637 from Murata Manufacturing Co.)  and a PIR 
sensor (IRA-E710 from Murata Manufacturing Co.) without 
the built-in amplifier and bandpass filter. As mentioned 
previously, the single-zone Fresnel lens is chosen over the 
multiple-zone lens to preclude interference from multiple 
monitoring zones. Our system’s horizontal and vertical field 
of view are both 90 degrees. Figure 4 shows a smartwatch 
prototype augmented with Pyro. A pilot study with 3 
participants suggested that the orientation of the crystal 
elements does not affect gesture recognition accuracy, so we 
aligned the elements parallel to the table.  

 
Figure 4. A smartwatch prototype augmented with Pyro. 

Sensing Board 
We built our customized sensing board (Figure 5) around a 
Cortex M4 micro-controller (MK20DX256VLH7 [2])  
running at 96MHz, powered by the Teensy 3.2 firmware [3]. 
The board has an LM324 [4] based ADC preamp, a power 
management circuit, and a Bluetooth module. To reduce the 
dominant noise (50 kHz - 300 kHz) caused by powerline and 
fluorescent light ballasts, we implemented a bandpass filter 
with cut-off frequencies of 1.59 Hz and 486.75 Hz. The 
relatively wide bandwidth gives us the flexibility to explore 
sampling rates. After the noise is removed, the input signal 
is amplified with a gain of 33 and biased by AREF/2 (1.5 V) 
to preserve the fidelity of the analog signal. The gain value 
is carefully tuned to have an optimal sensing range of 
approximately 0.5 cm to 30 cm away from the PIR sensor. 
This design mitigates the background thermal infrared 
signals from the human body minimizing the impact on the 
foreground finger gesture signal. 

 
Figure 5. Pyro sensing board. 



Although existing literature suggests that the PIR signals 
should be better sampled at 10 Hz for detecting human body 
movement [51], we found 20 Hz works better for micro 
finger gestures. This is because the frequency of PIR signals 
generated by nearby-finger movement is between 2 Hz and 
10 Hz. Finally, PIR signals are sent to a laptop through 
Bluetooth for further computation. In total, our prototype 
costs $24. It can be made smaller and cheaper in high volume 
commercial applications.   
Machine Learning  
We use machine learning to classify thumb-tip gestures. 
While there are many options for classification algorithms 
(e.g., Hidden Markov Models and Convolutional Neural 
Networks), many of them are computationally expensive, 
and therefore potentially unsuitable for real-time 
applications on low-power platforms such as smartwatches 
[35]. We aim to strike a balance between recognition 
accuracy and computation efficiency. As such, we narrowed 
the candidate gesture recognition methods to Random Forest, 
Support Vector Machine, and Logistic Regression. After 
comparing their recognition accuracy (e.g., results shown in 
Figure 9), we decided to use Random Forest in our 
implementation. Random Forest has previously been found 
to be accurate, robust, scalable, and cost-efficient in 
computation when tracking micro gestures using radar [35] 
or computer vision [12] techniques.  
Feature Extraction 
Like any machine learning application, extracting relevant 
features is critical to the success of Pyro. The challenge, 
however, lies in the fact that selecting the right feature set is 
not obvious. Although features like FFT, peak amplitude or 
first-order derivative are commonly used in various 
applications, we found that using them directly to train a 
Random Forest model led to a rather low accuracy and none 
of the existing research provided insights into suitable 
features for characterizing micro thumb-tip gestures using 

pyroelectric infrared signals. We decided to use tsfresh [5], a 
feature extraction toolbox, to extract hundreds of features 
from time and frequency domains. We sampled PIR signals, 
made them equal length with zero padding, and normalized 
them. We then extracted features and used these features to 
train and test the models. Results are reported in the later 
sections. Table 1 shows the top-50 most effective and 
relevant features ranked by Random Forest. Interestingly, 
half of them are from the time domain and the remaining half 
are from the frequency domain. This confirms that data from 
both domains are treated equally important by Random 
Forest. Figure 6 presents the normalized values of the top-50 
features (same order as in Table 1) and raw signals for the 
six thumb-tip gestures.  

Time 
Domain  

(26 features) 

• Statistical Functions (21): Sum, Mean, Median, 
Standard Deviation, Skewness, Quantiles (4), Kurtosis,  
Longest strike above/below mean, Count above/below 
mean, mean autocorrelation, mean absolute change 
quantiles (3), autocorrelation of lag, ratio of unique 
values, Variance 
• Peak (1): Number of values between max and min 
• Entropy (3): Binned Entropy, Sample Entropy, 
Approximate Entropy 
• Energy (1): Absolute energy 

Frequency 
Domain  

(24 features) 

• Continuous Wavelet Transform (21) 
• Fast Fourier Transform (1) 
• Autoregressive (1) 
• Welch (1) 

Table 1. Top-50 features ranked by Random Forest. 

USER EVALUATION 
The goal of this study is to validate Pyro’s gesture 
recognition accuracy, as well as its robustness against 
individual variance and among different users. 
Participants 
Ten right-handed participants (average age: 26.4, two 
female) were recruited to participate in this study. 

Figure 6. Top 50 features of six thumb-tip gestures. 



Participants’ finger temperatures measured between 24.1 °C 
and 34.4 °C (SD = 4.6). The room temperature was 24 °C.  
Data Collection 
Each participant was instructed to sit in front of the PIR 
sensor placed on a desk. Before a session started, participants 
were given several minutes to learn the six unistroke gestures 
(triangle, rectangle, circle, question mark, check mark, and 
finger rub). After the short training session, each participant 
performed the gestures roughly 0.5 cm to 7 cm in front of the 
PIR sensor using their right hand. Participants were not given 
any instruction on how to perform the gestures (e.g. 
magnitude or duration), except the direction in which the 
gestures should be drawn. The start and end of each gesture 
was indicated by clicking a computer mouse using their left 
hand. Each gesture was repeated 20 times in each session 
[24, 35, 54, 56], which took about 15 minutes to complete. A 
five-minute break was given between sessions, where 
participants were asked to leave the desk and walk around 
the lab. Data collection finished after three sessions. The 
study took about an hour to complete for each participant. In 
total, we collected 3600 samples (10 participants × 6 gestures 
× 20 repetitions × 3 sessions) for analysis.  
Result 
We present experiment results to demonstrate the accuracy 
and reliability of our system.  
Within-User Accuracy 
Within-user accuracy measures the prediction accuracy 
where the training and testing data are from the same user. 
For each participant, we conducted a twofold cross 
validation, where half of the data was used for training and 
the remaining half used for testing. The overall within-user 
accuracy was calculated by averaging the results from all the 
participants. The result yielded an accuracy of 93.9% (SD = 
0.9%). Figure 7 left shows the confusion matrix.  

 
Figure 7. Confusion matrices. Left: cross validation accuracies; 
Right: leave-one-session-out accuracies. 

Reproducibility 
Reproducibility measures how stable and scalable the system 
is against the data collected from a different session. To 
measure the system reproducibility, we calculated the leave-
one-session-out accuracy for each participant by training the 
model using the data from two sessions and testing it using 
the remaining session. The average accuracy for each 
participant was calculated by averaging all possible 

combinations of training and test data. The overall accuracy 
was then calculated by averaging the accuracy from all 
participants. The result yields 84.9% accuracy (SD = 3.5%). 
Compared with cross-validation accuracy, this result reflects 
a more realistic situation. Figure 7 right shows the confusion 
matrix. Rectangle received the highest accuracy (i.e., 92%) 
among all six gestures. A potential reason is that the 
rectangular trajectory has many sharp turns that make the 
signal more distinguishable than others. The mix of curves 
and a sharp turn in the question mark may also contribute to 
the higher accuracy. Most gestures (except rectangle) are 
more likely to be confused with circle, and vice versa (Figure 
7 left). This can be attributed to many factors (e.g. gesture 
geometry, how gestures were drawn, and recognition 
algorithm) and requires further investigation. The trend is 
similar between within-user accuracy and leave-one-session-
out accuracy, where rectangle and question mark received 
higher scores than others, while circle remained the most 
confusing gesture. These results suggest that gestures with 
higher accuracy were also drawn more consistently across 
sessions.  
Universality 
Universality measures whether an existing model works 
across different users. To calculate the accuracy, we used the 
data from nine participants for training and the remaining 
one for testing. The overall accuracy was then calculated by 
averaging the results from all ten combinations of training 
and test data. The overall accuracy is 69% (SD = 11.2%). 
which indicates that different users performed gestures 
differently even though the internal consistency is quite high 
for each individual participant. Figure 8 left shows the 
confusion matrix of all six gestures, from which we found 
that check mark (48.2%) and circle (58.5%) contributed the 
most to the error. We then removed them and calculated the 
accuracies using the remaining data. The result yielded a 
higher accuracy of 76.3% (SD = 6.8%) without check mark 
and 87.6% (SD = 6.7%) without both (Figure 8 right).  

 
Figure 8. Left: confusion matrix of cross-user accuracies; 
Right: cross-user accuracy with gesture sets of different sizes.  

Prediction Methods 
With the number of different options available for prediction 
methods, we were also interested in measuring how well they 
perform on our data. We ran our data with four additional 
methods, including Poly Kernel Support Vector Machine 
(SVM), RBF Kernel Support Vector Machine, Logistic 
Regression, and Dynamic Time Warping (DTW), each with 
different strengths and weaknesses. Similar to [35], we did 



not try Hidden Markov Models and Convolutional Neural 
Networks as they require significant computational power, 
making them less suitable for small computing devices. We 
report the prediction accuracy obtained from each method by 
showing the cross-validation accuracy, leave-one-session-
out accuracy, and leave-one-subject-out accuracy (Figure 9). 
The result shows that Random Forest outperformed all other 
tested methods on all three metrics, followed by SVM with a 
Poly Kernel.  

 
Figure 9. Recognition accuracy under various prediction 
methods. 

SUPPLEMENTARY STUDY: ENVIRONMENTAL NOISE 
Micro finger gestures will be performed in noisy and 
inconsistent environments. Thus, we conducted initial 
experiments in a controlled lab environment to evaluate how 
robust our system is against common environmental noises, 
such as ambient light and nearby hand movements. 
Additionally, we also measured the impact of rapid changes 
in hand temperature. This study was carried out with a single 
participant (male, right-handed, 25 years old).  
Data Collection 
The data collection procedure was similar to the user 
evaluation, except that we collected only two sessions of 
data. Both sessions were used for training. Since no ambient 
noise was presented, the prediction model was created under 
a clean and controlled environment, which we believe is the 
easiest way to model in real practice. Our goal was to test the 
performance of this model under varying noise conditions. 
In total, we collected 240 (6 gestures × 20 repetitions × 2 
sessions) gestures to train our prediction model. Test data 
was collected in separate sessions under different noise 
conditions. For both training and testing, the participant 
performed the gestures roughly 0.5cm to 7cm in front of the 
PIR sensor using his right hand. Room and finger 
temperatures measured around 23°C and 35°C respectively 
prior to the experiment. 
Ambient Light  
A PIR sensor senses thermal infrared with wavelengths 
ranging from 8 μm to 14 μm, which is not emitted by most 
indoor light sources (e.g., LED, fluorescent lights) and yet is 
contained in sunlight. Thus, we focused on understanding 
how much sunlight affects the sensing performance. We 
collected test data (6 gestures × 20 repetitions × 2 sessions) 
under two lighting conditions: dark (0 lx – 20 lx, a dark room 
without any sunlight) and bright (200 lx – 300 lx, under 
sunlight leaked through a window). Data for both conditions 

were collected indoors to ensure the consistency of the 
environmental temperature.  

The result shows that the clean model achieves 82.5% and 
84.2% accuracy in dark and bright condition respectively. 
This is similar to the leave-one-session-out accuracy in Study 
2, indicating that interferences from ambient thermal infrared 
have little effect on the sensing performance in our set-up. 
This is expected because the differential amplifier of our PIR 
sensor cancels out any ambient interference that equally 
affects both sensing elements. More evaluation, however, 
should be done outdoors to fully understand the effect of 
ambient light (e.g. whether the sensor will be saturated when 
sun light is too strong).   
Nearby Hand Movement 
We also tested the robustness of our system against 
background hand movements. Another person waved their 
hand in random trajectories behind the participant’s fingers 
in a distance no further than 30 cm away from the sensor to 
create background noise. In total, 120 gesture instances (6 
gestures × 20 repetitions × 1 session) were collected for 
testing. The result was 86.7% accuracy, which is again 
similar to those found in the other conditions, indicating that 
background hand movement does not have a negative impact 
on sensing micro thumb-tip movement in our settings. We 
believe it is because 1) the foreground hand blocks 
background objects from the sensor’s viewing angle and 2) 
the amplifier gain was adjusted to limit sensing long-range 
motion.  
Hand Temperature 
Hand temperature may change drastically after the hand 
holds a hot or cold object (e.g., a cup of a hot or cold drink). 
To understand whether the rapid, significant change in finger 
temperature affects sensing performance, we varied the 
temperature of the participants’ fingers by asking the 
participant to hold a cup of hot water or soak fingers in ice 
water before performing gestures. In the hot condition, the 
fingertips measured around 41°C after holding a cup of hot 
water for several minutes whereas in the cold condition, the 
fingertips measured around 24°C after soaking fingers in ice 
water for several minutes. The participant started gesturing 
immediately after the temperature was set. The finger 
temperature returned to around 36°C at the end of the hot 
finger session and 34°C at the end of the cold finger session. 

We observed that hot fingers did not introduce a visible 
impact on the analog signal. The resulting 85.8% accuracy 
further confirmed that a rapid increase in finger temperature 
does not negatively affect recognition accuracy. In contrast, 
when the hand was cold, the analog signal became visually 
weaker. However, the signal quickly returned to the normal 
scale after the hand temperature reached to 27°C (within 
roughly 3 seconds in a room temperature of 23°C). Although 
we found that the overall prediction accuracy was not 
affected (i.e., 83.3%), the hand temperature increased too 
quickly to allow us to draw a conclusion. To extend our 
understanding on the effect of cold fingers, we collected 



another set of gestural data, where we controlled the finger 
temperature within a range between 24°C and 26°C. The 
result yields 53% accuracy, which suggests that recognition 
accuracy was affected by the significant drop of hand 
temperature. It is because a smaller temperature difference 
between the finger and environment causes weaker signals 
when hand temperature drops significantly. Thus, the system 
performance will likely be affected if our model is used in 
cold temperature conditions, but the issue may go away 
quickly once the hand returns to a normal temperature.  

Overall, the results of this study are encouraging. They 
provide insights into the pyroelectric infrared sensing in 
varying usage conditions, and the robustness of our system 
against tested noises.  

DEMO APPLICATIONS 
We implemented two demo applications to showcase Pyro’s 
potential on wearable devices. Our first application is a video 
player on a smartwatch. We created a smartwatch prototype 
using a 2” TFT display, a 3D printed case, and the Pyro 
system. First, the user can draw a circle on their index finger 
as a shortcut to launch the video player app. This way the 
user does not need to browse the app list to find the app. 
Unlike the existing video players on smartwatches, where the 
control panel can occlude the screen content, our application 
allows the user to draw thumb-tip gestures to control the 
video. For example, the user can rub their finger to play or 
pause the video (Figure 10 left). Drawing a question mark 
shows the information of the video, such as title and year.  

   
Figure 10. Left: A user rubs the fingers to play/pause a video; 
Right: Drawing a check mark with touch takes a photo and 
shares it on Facebook. 

Our second application allows the user to interact with a 
head-worn display using the thumb-tip gestures. We 
augmented a Google Glass using Pyro. The sensor is placed 
beside the touchpad near the ear. This provides a new input 
channel on Google Glass. Additionally, it also allows the 
touchpad and thumb-tip input to be used jointly. With this 
new style of joint input, many novel interactions can be 
performed. For example, thumb-tip gestures performed with 
and without the index finger touching the touchpad can lead 
to different actions. Touching the touchpad in different 
locations may also lead to different actions. In our 
application, a check mark gesture is a shortcut for taking a 
photo while a check mark gesture with the index finger 
touching the touchpad will take the photo and share it on 
Facebook (Figure 10 right). Alternatively, performing a 
thumb-tip gesture before or after gesturing on the touchpad 
can trigger different actions. This style of input is similar to 

Air+Touch [15], but without the need of an expensive 
camera-based sensing technique. In our application, rubbing 
the thumb and index finger before swiping the touchpad 
zooms the map in or out whereas swiping without rubbing 
pans the map.  

DISCUSSION AND LIMITATIONS 
In this section, we discuss the insights gained from this work, 
propose future research, and acknowledge the limitations. 

Gesture delimiter. The focus of this work is the sensing 
technique. The gesture delimiter, however is an important 
topic to study in the future. A number of options exist. For 
example, distinguishable signals from the hand entering or 
leaving the sensor’s active region can be used as an explicit 
delimiter. To quickly validate this method, we conducted an 
informal study, where we recruited 3 male participants 
(average age: 26.7) and trained a two-class classifier (6 micro 
gestures vs hand-in/out) using 120 samples for each class. 
Overall, we collected 720 samples (2 class × 120 samples × 
3 participants) for analysis. A two-fold cross validation 
yields a 98.6% (SD = 0.4%) mean accuracy. The result is 
very promising. Future implementations include developing 
a hierarchical classifier, where the first classification layer 
determines the start or end of a gesture, and the second layer 
predicts micro gestures that the user performs.  

False positives. Coarse-grained movements, such as a person 
passing by the sensor, may generate signals similar to hand 
motions, and so future research should focus on reducing 
false positives. Our initial tests indicate that body movement 
more than 40 cm away from the sensor generates much 
weaker signals that can be distinguished from hand-in/out. 
We believe this can filter out many ambient motion noise in 
public settings. According to Edward Hall’s theory of 
interpersonal spatial relationships, 40 cm is still within the 
distance between people in a social environment [25], so 
body movements from a nearby colleague or friend may 
accidently trigger the delimiter. A potential solution is to 
reduce the focal distance of the Fresnel lens to around 10 cm, 
which filters out motion noises in many social activities.  

Additionally, smartwatches have a built-in mechanism to 
turn on the screen by detecting the user’s intention to use the 
smartwatch. Pyro can leverage this mechanism and only 
activate the sensor when the smartwatch screen turns on. 
Whirling the wrist of the hand wearing the smartwatch might 
introduce false positives. Activating the sensor only when 
the touchscreen is on can reduce the error. Interacting with 
the touchscreen might also cause false positives but the PIR 
sensor can be deactivated if the smartwatch detects a touch 
event. Future research will carefully validate the 
effectiveness and usability of different options and 
techniques to avoid false positives.  

Evaluation. Although our supplemental studies show some 
promising system robustness against different lighting 
conditions, hand temperatures, and background motion 
noises, further evaluation should be done in more diverse and 



realistic settings (e.g., outdoors). Since the amplitude of the 
analog output of a PIR sensor is proportional to the 
temperature difference between the finger and the 
surrounding environment, it is interesting to test our system 
in various environmental temperatures, such as in extremely 
hot or cold days. It is also interesting to validate whether a 
model trained in one temperature condition (e.g., hand and 
environment) works in a very different temperature 
condition. Additionally, Pyro’s tracking accuracy can also be 
evaluated when the user is on-the-move (e.g., walking or 
running). A potential research direction is to reduce the 
impact of physical activities on sensor data. Future research 
can focus on studying how much the signal can be affected 
by a shaking wrist when walking or running. The result can 
help us design and validate solutions to filter out the motion 
noise from gesture signals.  

Cross-user model. Our study shows that people may perform 
the same gesture in different ways. This means that a model 
needs to be trained for each user in order to make use of all 
six tested gestures. In our future work, we will seek to 
enhance our machine learning model to better deal with user 
diversity. We will also explore additional thumb-tip gestures 
and examine gesture parameters that vary across users. 
Future research could focus on exploring alternative micro 
gestures and understand the parameters, in which gestures 
from different users may vary. Signal variance may also 
appear between users with and without long fingernails. 
Future research will help us identify and extract ad-hoc 
features to improve the cross-user accuracy.  

Customizing PIR sensor. In this work, we used an off-the-
shelf PIR sensor with a pre-configured Fresnel lens. An 
interesting research direction is to customize the inner 
configurations of a PIR sensor for detecting micro thumb-tip 
gestures. Future work will include building a PIR sensor 
from scratch, so that we can test different crystal alignments 
and electronic designs. We also plan to test Fresnel lenses 
with different focal lengths to optimze sensing performance. 
Conversely, it will be also interesting to test more off-the-
shelf infrared sensors (e.g., thermopile and quantum-type 
infrared sensors).  

Power. We examined the power consumption of our current 
prototype. Overall, our sensing board consumes 148.1 mW, 
excluding the Bluetooth radio (99 mW) used to transfer PIR 
data to an external laptop for feature extraction and gesture 
classification. The sensing component (PIR sensor and its 
analog frontend) alone consumes 2.6 mW.  

The current power number is dominated by the Teensy 
framework. In particular, the micro-controller [2] in the 
framework is the most power-consuming, as it contains two 
ADC components each operating at a 20-KHz sampling rate 
at a minimum. Given that Pyro requires only 20-Hz 
sampling, the system can consume significantly less power 
by using low-power ADC (for example, the ADS7042 from 
Texas Instruments supports 1 kHz sampling rate with less 
than 1 microwatt). Furthermore, our feature extraction and 

gesture classification algorithm are lightweight. Thus, it 
holds the potential to be run on lower-power micro-
controllers. Future research will explore porting these 
components to micro-controllers to make the system stand-
alone and measure the system’s total power consumption.  
CONCLUSION 
In this paper, we demonstrated the feasibility of recognizing 
micro thumb-tip gestures through sensing changes in thermal 
infrared signals emitted from our fingers. We developed a 
self-contained, proof-of-concept prototype in a wearable 
form factor using off-the-shelf PIR sensor and electronics. 
We used a Random Forest classifier to recognize six thumb-
tip gestures, including triangle, rectangle, circle, question 
mark, check mark, and finger rub. We evaluated system 
performance with ten participants, yielding a 93.9% cross-
validation accuracy and 84.9% leave-one-session-out 
accuracy on the six thumb-tip gestures. Additionally, we 
initially demonstrated our system’s robustness against 
different lighting conditions, hand temperatures, and 
background motion noises. Our work presents a passive 
sensing methodology for detecting micro thumb-tip gestures. 
We believe it holds the potential to be applied in a wide range 
of wearable and mobile devices. 
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