

CircuitStyle: A System for Peripherally Reinforcing
Best Practices in Hardware Computing

Josh Urban Davis1,*, Jun Gong1,*, Yunxin Sun1,3, Parmit Chilana2, Xing-Dong Yang1

Dartmouth College1, Simon Fraser University2, Tongji University3

{josh.u.davis.gr, jun.gong.gr, xing-dong.yang}@dartmouth.edu, pchilana@cs.sfu.ca,
martin.yunxin.sun@gmail.com

Figure 1. Overview of the CircuitStyle interface. (A) Students sort steps of the tutorial; (B) Style authoring tool; (C) Instructor
interface for at-a-glance awareness of classroom performance; (D) Student in-situ tutorial interface with dismissible style guide.

ABSTRACT
Instructors of hardware computing face many challenges
including maintaining awareness of student progress,
allocating their time adequately between lecturing and
helping individual students, and keeping students engaged
even while debugging problems. Based on formative
interviews with 5 electronics instructors, we found that
many circuit style behaviors could help novice users
prevent or efficiently debug common problems. Drawing
inspiration from the software engineering practice of coding
style, these circuit style behaviors consist of best-practices
and guidelines for implementing circuit prototypes that do
not interfere with the functionality of the circuit, but help a
circuit be more readable, less error-prone, and easier to
debug. To examine if these circuit style behaviors could be
peripherally enforced, aid an in-person instructor’s ability
to facilitate a workshop, and not monopolize instructor’s
attention, we developed CircuitStyle, a teaching aid for in-
person hardware computing workshops. To evaluate the
effectiveness of our tool, we deployed our system in an in-
person maker-space workshop. The instructor appreciated
CircuitStyle’s ability to provide a broad understanding of
the workshop’s progress and the potential for our system to
help instructors of various backgrounds better engage and
understand the needs of their classroom.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UIST '19, October 20–23, 2019, New Orleans, LA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6816-2/19/10...$15.00
https://doi.org/10.1145/3332165.3347920

Author Keywords
Software learning; real-time teaching assistance; hardware.

INTRODUCTION
In breadboard circuit prototyping, circuit style (akin to
coding style in programming) refers to a set of rules that
uniforms the appearance and construction process of a
breadboard circuit to make it readable, understandable, and
maintainable (Figure 2). Examples of good circuit style
behaviors include avoiding crossed wires while
prototyping, using as little wire as possible, and checking
the polarity of components before insertion. Practicing good
circuit style behaviors results in breadboard circuits that are
less error-prone, easier to debug, and easier to share.

Traditionally, breadboard circuit style has only been taught
in universities or colleges to students pursuing a degree in
electronics or related fields. However, increasingly, many
novice and untra*ined users, such as in maker communities,
are experimenting with breadboard prototyping on their
own to incorporate electronics into art projects. In addition,
the formal education backgrounds of high school
electronics teachers, maker instructors, and workshop
facilitators has also broadened beyond the traditional
background of electronic engineering [4]. Unfortunately,
the majority of tutorials and teaching materials available to
these new learners and instructors consists of lessons on
traditional electronics prototyping and focuses less
enforcing appropriate circuit styles [25].

Given the increasing diversity and evolving needs of both
educators and novice users in the hardware computing
community, there is need for lightweight learning tools that

* Indicates co-first-authorship

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

109

https://doi.org/10.1145/3332165.3347920
mailto:Permissions@acm.org
mailto:martin.yunxin.sun@gmail.com
mailto:pchilana@cs.sfu.ca
mailto:xing-dong.yang}@dartmouth.edu
https://jun.gong.gr
https://josh.u.davis.gr

support users from non-traditional backgrounds and
promote useful habits for electronic prototyping.

Figure 2: (A) Example of good circuit style: wires go around
ICs instead of over, components lay flat against board, etc. (B)
Example of poor circuit style: wires long and tangled,
components crammed together, etc.

Using a user-centered approach, we first conducted semi-
structured interviews with 5 instructors from various
backgrounds to understand the current practice of teaching
breadboard circuit style and any challenges the instructors
face. From these insights, we assessed the importance of
circuit styles and constructed a compiled list of common
physical computing best behaviors (Table 1), and weighed
the importance of the individual behaviors within this list of
circuit styles. Although the instructors agreed that enforcing
circuit style behaviors was an important aspect of an
electronics education, most instructors did not have the time
nor the ability to encourage and reinforce these behaviors
for student individually.

To address the challenges delineated by the instructors, we
created CircuitStyle, a workshop management tool to help
instructors construct hardware prototyping tutorials for in-
person workshops, keep track of participant behavior, and
peripherally reinforce good circuit style behaviors without
monopolizing the instructor or participant’s attention
(Figure 1). Unlike other workshop or classroom
management tools, this paper focuses on the peripheral
applicability of circuit styles to follow-along in-person
workshop tutorials. We provide a list of circuit styles
extracted from literature and interviews with workshop
instructors. In addition, our system supports several features
which peripherally reinforce these styles for students. These
tools aim to encourage classroom engagement and offload
style reinforcement to the software and student interaction.

For our evaluation, we deployed our system to a
makerspace workshop-like environment and conducted a
field study to evaluate the effectiveness of our system. We
found that our system helped the instructor better engage
with their students by reducing the amount of attention
monopolized by tracking student progress and reminding
students of common behaviors. The instructor also
appreciated the tutorial authoring tool and its ability to
deepen the instructors understanding of the course material

and better anticipate common errors their students may
encounter. In addition, workshop participants agreed that
the tutorial system was helpful for navigating the process of
circuit implementation and receiving circuit style reminders
was helpful for debugging their circuit.

The main contributions of this paper are: 1) insights into the
current challenges of teaching breadboard circuit style in
makerspace workshops; 2) a classroom management system
to help workshop instructors peripherally enforce circuit
style behaviors without interfering with participants’
learning of functional circuit construction or monopolizing
instructor’s attention; and 3) insights from a case study
investigating users’ initial impressions of the system’s
usability and usefulness. We discuss several insights for
future research in HCI to better support style behaviors for
electronics prototyping.

RELATED WORK
This work builds upon existing research in the design of
classroom management and learning tools, circuit
prototyping tools, and insights from teaching coding styles.

Classroom Management and Learning Tools
Several commercial products already exist which give an
instructor access to the activity of their students’ screens
(e.g., Softlink and NetSupport School). These systems make
the instructor aware of each student’s activity on the
computer and provide the instructor with coarse intervention
options, such as freezing a student’s input, or taking control
over their computer. Another class of tools in research also
provides general support for coordination in the classroom.
For example, GroupScribbles [19] extends the concept of
sticky notes to digital classroom media. FireFlies2 supports
cognitive offloading through the use of tangible pixel devices
distributed through the classroom [34]. In contrast to these
tools, our system provides contextual information about
students’ activity in a specific hardware skill being taught.
The idea is to help instructors with early detection of
potential problems, and to develop a series of robust “best-
practices” to prevent errors.

Closely relevant to our project is Maestro designed for in-
person 3D modeling tutorials [15, 16] where the tutor sees a
dashboard displaying each learner’s editor and can assess
their progress. Our system takes inspiration from Maestro’s
approach, but examines a different and largely unexplored
domain: hardware prototyping. This alters the problem in
several key ways (1) monitoring student progress is difficult
because it requires knowledge of a physical object being
used by the student, and not a virtual environment or
system, (2) the system is meant to be used as a support
device that peripherally re-enforces good practices instead
of providing the principle means of learning the material,
and (3) support tools should ambiently aid the instructor,
and students, not monopolize their attention.

Finally, a number of software learning systems have used
data from software logs to enhance software tutorials [18,
28], or provide improved help or capabilities within feature-

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

110

rich software [6, 11, 15]. These projects, however, focus on
an individual learning or using the software on their own.
We are interested in exploring software systems that
support learning for hardware computing in group settings,
a topic that has only received limited attention [10, 20].

Circuit Prototyping Tools
Prior work has shown that novice users face substantial
difficulty in designing and building physical computing
systems [4, 25]. Some challenges include choosing correct
components, wiring components together, programming
logic, specifying variable nomenclature, and debugging.

Several research systems have been developed to address
these challenges. For example, Toastboard [9] is an
intelligent breadboard that assists novices with debugging
through LED indicators on the board itself, and a software
interface that provides troubleshooting tips. Bifröst [24]
instruments both the hardware and software components of
embedded computing projects to help users trace the system
state and assists in debugging. Trigger-Action Circuits [2]
enables users to specify desired functionality at a behavioral
level, and generates designs and corresponding instructions
for assembling them. PICL [12] allow users to create
sensor-based interactive systems using “programming by
demonstration” (i.e. using demos to view actions and
modifying them for use). Other systems teach fundamental
concepts of circuit design, and programming. For example,
Programmable Bricks [30] allows children to develop
electronic hardware using LEGO bricks embedded with
computers, sensors, and actuators. ElectroTutor approaches
this problem by integrating interactivity into traditional
step-by-step tutorials for hardware prototyping on the
Arduino [35]. Finally, a number of systems have been
developed that aid in sensing the state of the electronics
components in embedded systems [9, 33, 36], data which
could aid in debugging and troubleshooting.

Unlike the systems focused on developing novel hardware
and sensing techniques or improving individual instruction,
our work examines how circuit style practices can be
communicated to novices and reinforced peripherally. We
use the metaphor of software coding style as inspiration for
developing our system. We also examine this problem from
the instructor’s perspective and our approach supplements
the in-person mentorship provided by an instructor.

Teaching Coding Style
Evidence in the literature suggests that effectively teaching
and enforcing coding style in programming (e.g.,
indentation, whitespace, naming conventions, etc.)
significantly mitigates the number of bugs in a
programmer’s code, preemptively prevent programmers
from making common errors, and promotes the readability
of the code [3]. Although coding style has little effect on
the program’s behavior, it does have a significant influence
on sustainability and readability for developers [5,26]. The
choice of coding style is largely a matter of developer
preference and evolves from their programming experience
[27]. Although compliance with coding standards across an

institution or project team can enhance team
communication, reduce program errors, and improve
overall code quality [1,13], developers and students do not
consistently follow such conventions [22].

Another class of tools assist in enforcing good coding
styles. For example, Foobaz is a tool that allows educators
to provide custom feedback to students on variable names
at scale [14]. Similarly, PeerStudio allows students to
receive feedback from fellow students, reducing wait-time
for help and improved learning [17]. Style Avatar visualizes
student’s source code style as facial expressions to
peripherally reinforce programming concepts [23].
AutoStyle is a research system that provides automated,
adaptive style hints which suggest syntax shortcuts and
code skeletons that enforce good coding style [7].

The above systems show that enforcing various aspects of
good coding style can improve readability, portability, and
maintainability of code while reducing the rate of error.
This early experience of reading quality code and
experiencing less frustration while debugging is especially
crucial for novice users [22]. To better understand if this
style behavior could be equally useful within the domain of
physical computing, we considered the design space of how
style suggestions could be integrated peripherally into
circuit prototype training in a group setting.

FORMATIVE STUDY AND DESIGN CONSIDERATIONS
Based on the above literature review, our first goal was to
understand instructors’ current use of hardware computing
style protocols when teaching novice users.

Procedure
We devised a semi-structured interview protocol and
recruited 5 instructors who taught electronics prototyping at
various institutions including formal primary education
classrooms, makerspace workshops, and higher education.
We examined common teaching tools used, difficulties
instructors faced when facilitating in-person circuit
tutorials, and common style behaviors they repeatedly
reinforced to their students. We also presented the
instructors with a list of potential stylistic choices for
hardware computing and asked the instructors to rank their
importance on a 7-point Likert scale (Table 1).

Participants
The instructors in our study had a variety of backgrounds
including Visual Art, Physics, Electrical Engineering, and
English. Some had very little experience in teaching
hardware computing before they were asked to begin
conducting tutorials on circuit prototyping. This was very
surprising to us, so we asked the instructors to elaborate

further how they learned the material they taught in their
workshops or classes. They reported that often they learned
the material while preparing for their lecture, often
completing the circuit themselves the night before class. In
this way, some of the instructors learned some of the
material in tandem with their students.

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

111

Avg. Severity
Circuit Styles (1-7)
Ensure component's polarity is correct before
insertion (e.g. batteries, LEDs) 7.00 (σ=0.00)
Avoid changing components on a breadboard
whenever the board is powered. 6.88 (σ=0.22)
Measure the component's value (resistance/
capacitance/ inductance) before insertion. 6.63 (σ=0.41)
Check IC part number before insertion. 6.50 (σ=0.61)
Build and test in subsections. 6.50 (σ=0.87)
Begin by placing the ICs first. Then connect
relevant components which directly reach out from
the IC pins. 6.38 (σ=0.54)
Always check the whole circuit and connect the
power supply to the circuit last 6.25 (σ=1.30)
Verify the power supply voltages and input signals
with an oscilloscope or voltmeter. 6.13 (σ=0.54)
Use the power rails to connect power supply. 6.13 (σ=0.74)
Push the component down firmly until it cannot go
any further. 5.88 (σ=0.74)
Avoid laying wires or components over ICs. 5.88 (σ=1.14)
Use as little wire as possible. 5.63 (σ=0.96)
Ensure wires/components are trimmed to lay flat
against the breadboard. 5.50 (σ=1.06)
Don’t insert two pins of different components or
two wires into the same socket. 5.50 (σ=2.06)
Keep pin 1 of all IC's pointing the same direction. 5.38 (σ=1.47)
If more than one IC is involved, make sure they
are separated by several rows. 5.25 (σ=1.03)
Avoid placing two components with long legs
close to each other. 5.00 (σ=1.46)
Run a circuit simulation before building. 4.50 (σ=1.12)
Understand the breadboard connection (Watch out
for split power rails) before you start. 4.50 (σ=1.50)
Color code the wires of your circuit (e.g., red for
power, black for ground). 4.50 (σ=1.80)
Carefully check the component's row and column
number before inserting into board. 4.13 (σ=1.75)
Avoid cramming components into compact areas;
use the whole breadboard space uniformly. 3.88 (σ=1.88)
Keep the relative position of components as
similar to the diagram as possible.. 3.75 (σ=1.89)
Avoid crossing wires. 3.38 (σ=1.85)
Begin by connecting power and ground rails. 3.25 (σ=1.79)
Bend each wire at 90°. 3.00 (σ=2.03)
Use software to plan the breadboard circuit first. 2.63 (σ=1.71)
Table 1. Compiled list of circuit styles aggregated from
instructor interviews with average importance score associated
with each style.

Results
Most of the instructors agreed that circuit style behaviors
were important to learn, but difficult to teach because they
required repeated reinforcement. Most of the instructors, for
example, mentioned the need to repeatedly remind students
to check the polarity of various components before inserting
the component into their breadboard, or to use a multimeter
to ensure their component is working properly. The
interviewed instructors agreed that enforcing these
behaviors was important, but doing so in a workshop setting
required considerable time and attention.

We also found that most instructors had directly taught their
students some of the stylistic protocols we identified through
our literature review, even though they had not previously
been aware of the concept of “style choices” for circuit

prototyping. For example, almost all of the instructors
repeatedly reminded students to complete the implementation
of their circuits before powering their system. Instructors
varied significantly in their severity rankings for the
compiled list of circuit style rankings (summarized in Table
1). Some argued, for example, that it was extremely
important for students to consistently color code their wires,
while others insisted this was not necessary.

We also found that instructor’s attention was significantly
strained during lectures, and as a result of this, enforcing
these stylistic behaviors or other best practices is difficult:

[P4] It’s frustrating…when you just told the entire class [to check
the polarity of their components] and then you immediately get a
question from one student about why [their circuit] isn’t
working…and then the same questions from another student…only
to discover that they didn’t check the polarity of the resistors.

This frustration reflects the exhausting demands placed
upon the instructor to reinforce these practices in addition
to facilitating the class. A reinforcement system that assists
the instructor in peripherally supporting these style
behaviors could potentially alleviate the instructor’s burden
while assisting new students in developing good
implementation stylistic practices.

Design Considerations
Based upon our literature review and our interviews, we
synthesized the following criteria for designing a new
system that reinforces circuit style practices.

Glance-able awareness of student’s progress. Since an
instructor’s attention may be monopolized by lecturing and
assisting individual students, she should be able to monitor
a student’s progress throughout the duration of a workshop
in a quickly-digestible manner. An instructor should
preemptively identify and prevent common errors students
may encounter without compromising with their focus.

Supplement, not replace, an in-person instructor.
Although log data can be useful in enforcing good style
practices, this approach cannot capture the nuanced
understanding of individual student skills and motivations
like an in-person instructor. A style enforcement tool
should allow the instructor to decide which stylistic choices
should be enforced, as well as when and how these style
choices will be enforced.

Reinforced Mastery. Since many instructors do not have
formal training or expertise in electronics prototyping and
circuit styles, these instructors should be able to reinforce
their own knowledge and mastery of styles. This design
consideration is intended to allow instructors to find as
many mistakes as possible in order to prevent these same
mistakes in their student’s work.

Ambient Nature. To prevent distraction from the main task,
a style reinforcement tool should be displayed ambiently.
This can reduce the time-cost and required user interaction
to access the help content and not add any cost when not
using the guidance system (i.e., it can be easily dismissed).

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

112

To minimize distraction, user should be rarely interrupted.

DESIGN AND IMPLEMENTATION OF CIRCUITSTYLE
To address the above design considerations, we
implemented CircuitStyle, a web-based tool to reinforce
good circuit styles without monopolizing the student or
teacher’s attention. CircuitStyle allows instructors to author
circuit tutorials and use the classroom management feature
for live instruction, and a student interface for following
tutorials and carrying out peer reviews.

Tutorial Authoring Tool
CircuitStyle first allows instructors to interactively compose
a step-by-step tutorial for students to follow (Figure 3). In
addition, an instructor can assign circuit style behavior
guidelines to individual steps in the tutorial, and decide how
these behaviors will be evaluated.

Figure 3: Overview of tutorial authoring; (A) Instructors can
preview their uploaded circuit diagram; (B) Multiple photos
can be uploaded to create a slide show; (C) Instructor can
input additional instructions and step details.

Integration with Existing Tools: The instructors are first
asked to indicate which circuit they would like to build.
Many of the instructors that we interviewed suggested that
their tutorials were often taken from websites such as
Sparkfun or generated using the open source Fritzing
software. To accommodate this, we allowed instructors to
upload a csv file containing the steps of their tutorial
generated by Fritzing. This also includes uploading a
picture of the completed circuit for student reference.

Style Authoring Tool and Default Styles: Our formative
study showed that the breadth and importance of certain
style choices varied greatly from instructor-to-instructor. To
account for this, the second step of our authoring tool
allows instructors to create their own style behaviors, or
modify a list of default stylistic choices (Figure 4). Previous
work indicated that coding styles are most effective when
consistent across a project or organization, and malleable
according to the instructor’s needs [1, 13, 21]. Thus,
allowing the instructors to modify the stylistic choices from
project to project provides the flexibility instructors desire
with the consistency students need.

Each circuit style (Figure 5) contains information pertaining
to the proper implementation of the style, and indicates the
level of severity which can adjust student’s attenuation to

various styles [22, 29]. In addition, instructors can upload
photographs of good and bad implementations of the style
which has been demonstrated to better engage students and
assist in students being able to distinguish between good
and bad circuit style implementation [22, 31]. Instructors
can choose between validating their circuit styles through
either a quiz or a student-driven peer review depending on
which method they feel better evaluates that particular style
[14]. Default style choices were compiled from our
formative instructor interviews and aggregated according to
their severity rankings. (e.g. wire color coding, connecting
ground and power rails, etc.) These default styles are also
editable by the instructor according to their needs.

Figure 4: Style Authoring Tool; (A) New styles can be created
or default styles can be modified; (B) Styles verified using
either quiz or peer review; (C) Description of proper style
implementation; (D) Style details; (E) Photo examples of both
good and poor style implementation can be uploaded.

Subsection Authoring and Scalability of Tutorial
Complexity: Next we ask the instructor to organize the
steps of their tutorial into subsections since we observed
that this was done mostly manually by instructors. This step
helps the overall organizational flow of the workshop,
especially when working on larger, more complicated
circuits. We designed this feature to help streamline this
process and help scale workshops to larger circuits.

The instructors then step through the tutorial themselves
and assign behaviors to each step. Since instructors may
come from a variety of backgrounds, many of them may
need to complete the tutorial themselves to fully understand
the material. Our system accounts for this by encouraging
tutorial authors to photograph their own circuit after each
completed step. This is optional and can be replaced by
images from Fritzing or other software. We encourage
instructors to participate in this aspect of the tutorial
authoring system, as mistakes made by the instructor could
prove useful in preventing the same mistakes being
replicated by students. The purpose of this step is to
reinforce the instructor’s understanding of the material and
allow the instructor to teach a representational sample of
coding styles to better familiarize students with good style
habits [22]. In addition, this allows instructors to automate

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

113

the style reinforcement process by scheduling trigger events
that reinforce circuit style behaviors [32]. By completing
the circuit themselves instructors may be better aware of
which stylistic behaviors could prevent common mistakes.

Interactive Live Tutorials for Students
The student interface consists of a web application in
tandem with a mobile phone application for live workshops.
Our goal was to peripherally reinforce good circuit style
behaviors in hardware computing for students without
monopolizing too much student or instructor attention.

Step Sorting: Once the instructor has completed authoring
their tutorial, students can log into the phone application
and web interface. Once logged-in, students are presented
with an overview of the tutorial (Figure 1A). Many of our
interviewed instructors expressed frustration with ensuring
student engagement and attention when overviewing the
circuit. To account for this, students are met with an image
of the finished circuit, accompanied by a randomized
sorting of the tutorial steps. Students are asked to sort the
steps into the correct order before continuing. This
peripherally reinforces common wiring procedure steps, as
well as ensuring that students pay attention to the instructor
as they walk students through the circuit.

Step-by-Step Tutorial and Style Guide: Students are next
guided through the construction of the circuit step-by-step
as authored previously by the instructor (Figure 1D). The
left expandable panel contains information regarding the
particular style behavior indicated by the instructor during
tutorial authoring for that step (Figure 5). This includes a
detailed description of the style, and photos contrasting
good and bad examples of the style behavior. Having access
to style references has been documented in the literature as
an effective and commonly-used method for incorporating
style behaviors into programming since it mitigates the
amount of memorization demanded by the student [31]. For
this reason, we have included this feature here to facilitate a
similar reference experience for hardware computing.

Peer Review: To mitigate the amount of attention
demanded by the instructor when evaluating these stylistic
behaviors, we designed a peer evaluation system to allow
students to review each other’s work and provide feedback
(Figure 6). This experience is akin to the coding style
review process in the software engineering industry, and
has demonstrated effectiveness at engaging students to
learn through example and practice [22].

At the end of each section, students are asked to photograph
their circuit. We chose to conduct the peer review process
during section breaks to mitigate the participant’s cognitive
load that may result from code switching. Students are then
presented with photos of other student’s work, and asked if
a particular style is evident in the photograph. Students can
choose between “yes”, “no”, and “I don’t know” in addition
to leaving a comment (Figure 6). Encouraging peer-to-peer
and peer-to-instructor interaction has been shown to be an
effective reinforcement technique for coding styles [21].

Figure 5: Style card from left of student tutorial screen in
Figure 1D; (A) Expand/collapse style guide button; (B)
Overview of style information and proper implementation; (C)
Background color corresponded with severity level; (D)
Photograph examples of both good and poor style execution.

The number of circuits a student is asked to review at the
end of each section depends on how many students are in
the class, and how many styles the instructor designated for
examination during tutorial authoring. This aims to
reinforce the student’s understanding of the peripheral style
materials, mitigate potential errors, and reduce the amount
of attention needed by the instructor. In addition, this
practice is intended to encourage students to identify good
circuit style behaviors, which has been demonstrated in the
coding style literature to be an essential skill for developing
good style behaviors [31]. After the student’s peer review is
completed by their fellow students, a Style Reminder
slides-in from the top right hand corner indicating which
styles the student performed well and possible violations.

Style Reminder: After the peer review phase, students will
receive feedback in the top right corner slide-out window
which describes which styles they successfully performed and
which they may have missed. A collapsible style guide directs
the students to review any styles they may have missed, or
performed poorly during their last peer review. The style
reminder feature works in tandem with the collapsible style
guide and the peer review system to reinforce good style.

Student Progress Observational Interface
During live workshops and tutorials, we provide an
interface for instructors to gauge workshop behavior and
progress at-a-glance (Figure 1C). Our goal in the design of
this system was to support the instructor by providing
essential information on student performance, while not
monopolizing instructor attention. This consists of 3
principle components described below.

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

114

Figure 6: The Peer Review Interface; (A) Name of particular
circuit style to be evaluated; (B) Photograph example of good
style implementation; (C) Photograph submitted by fellow
student to be reviewed; (D) Student feedback options.

Tutorial Progress: The right hand panel contains an
expandable hierarchy of the steps and sections in the
tutorial as authored previously by the instructor (Figure 7).
Next to each step is a number indicating how many students
are currently completing that step of the tutorial.

In addition, tutorial steps and sections are color coded
according to the following scheme: grey indicates that no
students are currently working on this step, red indicates
that very few (<0.25) are currently working on this step,
and green indicates that the majority of students are
currently working on this step (>.50). This color scheme
was designed to allow instructors to momentarily glance at
the screen, and have an understanding of the class’s overall
progress through the tutorial [8].

Figure 7: Collapsible step hierarchy from Instructor's in-situ
tutorial screen in Figure 1C. Steps are color coded according
to density of students currently completing that step.

Student Submissions: The center of the screen can be
button-toggled to either reflect information regarding a
specific step, or view student’s most recent submissions for
peer review (Figure 1C). The tutorial view allows the
instructor to view the information pertaining to any
particular tutorial step, including instructions and
photographs related. By pressing the toggle button, the
student submission window displays the most recently
submitted student photos for peer review, as well as the
student’s name, and a pie chart reflecting their successful
performance of circuit style behaviors as evaluated by peer-
reviews and quizzes (Figure 8A).

This is intended to provide awareness of each students past
behavior history, current status [8]. The screen also allows
instructors to provide positive feedback to students in the
form of a thumbs-up, direct intervention in the form of
freezing the student’s screen, constructive feedback via
comments, as well as mitigate various issues regarding the
peer review process such as contested reviews (Figure 8C).
We designed this feature to encourage individualized
feedback that complements the automated triggered
feedback of quizzes and peer review [17, 22, 32].

Figure 8: Detail of intervention methods from Instructors in-
situ tutorial screen in Figure 1C; (A) Student information and
latest photo submitted as part of peer review; (B) Pie chart
reflecting student's successful performance of circuit styles;
(C) Intervention methods (e.g., thumbs-up, direct messaging)

Behavior Performance: The bottom panel contains a series
of pie charts (Bottom of Figure 1C) showing student
stylistic behavioral performance (the green indicates the
proportion of students who successfully completed that
stylistic behavior during the previous peer-review). These
charts are sorted from worst-performing behavior to best-
performing behavior, allowing the instructor to gauge
which behaviors might need to be further reviewed.
Providing awareness of overall classroom performance is
necessary to understanding areas of needed reinforcement
and direct intervention [22].

USING CIRCUITSTYLE IN PRACTICE: A CASE STUDY
We deployed CircuitStyle in a workshop setting to
investigate whether circuit style behaviors could be
peripherally enforced by our system and to gather users’
initial impressions of the system’s usability and usefulness.

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

115

Procedure
We recruited 11 students for a 90-minute instructor-led
electronic prototyping workshop where students were asked
to create a circuit and used CircuitStyle for assistance. The
instructor was asked to construct a typical makerspace
circuit tutorial using our interactive authoring tool. We
asked the instructor to narrate their experience using our
tool as they proceeded with the tutorial composition process
using our software. The resulting circuit tutorial guided
students through the creation of a button-activated, battery
powered motor circuit. The instructor was given a brief
overview of our software before construction their tutorial.
Students were then brought into the workshop area and
asked to complete a brief preliminary questionnaire
regarding their previous experience with electronics and
awareness of coding style practices, as well as circuit style
behaviors. Next, the students were instructed to log into our
web application and phone application and guided by the
instructor and software to complete the tutorial. We also
recorded video of student progress which helped us extract
various quantitative measurements of student performance.

Upon completion of their circuit, students were asked to
complete an exit questionnaire and interview. We also
conducted an exit interview with the instructor to better
understand their experience with our system.

Study Participants
Our workshop was led by an experienced maker-space
workshop leader who also authored the tutorial and guided
the workshop. He was recruited from another university due
to his extensive experience and interests in conducting
mentorship practices in makerspaces and running
workshops in hardware computing. His formal education
consisted of film studies although he now is pursing a
doctorate in computer science and business. The 11
workshop participants (2 females, 8 males, 1 non-binary)
ranged in age from 20 – 29 and possessed some familiarity
with electronics. But most participants (63%) did not have a
formal background in electronics, even if their current work
involved prototyping with electronics. The majority of
participants (45%) were studying software engineering or
computer science related disciplines while others were
concentrating in electrical engineering (27%), music (19%),
or design (9%). While almost all (91%) of our participants
were familiar with programming coding styles, only 36%
were familiar with circuit styles. Those that were familiar,
indicated that they had learned these behaviors from
instructors or by learning on their own. None of the
participants were involved with this project’s research in
any capacity beyond participating in the study.

Key Findings from the Workshop
We found that students overall enjoyed the workshop and
that the instructor found the tool useful for planning their
lesson as well as surveying the performance of the
workshop. We discuss our key results by first focusing on
the facilitator impressions followed by student feedback.

Facilitator Impressions
In this section, we revisit our design goals presented earlier
in context of feedback provided by the workshop instructor.

Glance-able awareness of student’s progress: The
instructor overall appreciated CircuitStyle’s assistance in
keeping track of the overall progress of the class. In
particular, he emphasized the utility of the automatic
indication of which students had completed which steps. He
highlighted that the visual nature of many UI elements
helped mitigate the amount of attention he had to attenuate
to the system. For example, he found the color coding of
individual steps to be intuitive and helpful:

It was useful to see where people were in the steps… the color
coding was helpful because it let me know where they were getting
stuck without having to look too hard.

The instructor reported that usually with step-by-step
tutorials, he had little information on how students were
progressing in the project. He was enthusiastic about the
follow-along detection feature in CircuitStyle that allowed
him to see the most recent photo of the student’s circuit:

I’m a visual person so I liked seeing the individual circuits…this
was the most helpful aspect for me because I could immediately see
how the students were doing…was really helpful to keep track of
where they might get stuck.

In a traditional workshop environment, the instructor would
spend a lot of time walking around to see how students
were performing. With CircuitStyle, he could spend more
time actually helping the struggling students:

[With CircuitStyle]…I could hone in on a few students and help
them as opposed to walking around to find out who was struggling.

He also expressed appreciation at our positive re-
enforcement tools, such as the ability to give a student’s
most recent submission a “thumbs-up” or send a quick note.
He indicated that novice students often are unsure if they
completed a step correctly, and this allowed him to provide
positive re-enforcement of good work.

Supplement, not replace, an in-person instructor’s
capabilities: In terms of supplementing in-person instructor
capabilities, we were surprised to find that the instructor
expressed an increase in their engagement with the class. In
interacting with our behavior performance feature, he
mentioned that although it was a secondary task to examine
the pie charts at the bottom of the screen, it was helpful to
see if one particular style was severely being missed:

I liked that it showed me potential challenges students might
face…because they weren’t following the style guide…and seeing
individual student circuits told me who needed help.

Despite the instructor’s enthusiasm for our system, he
indicated that the system might be even more helpful for
students in larger workshops. In our workshop, we noticed
that if a student encountered a problem, they would usually
ask their immediate neighbor for assistance in debugging the
problem and not always rely on the peer review. Examining
the usefulness of this feature in learning contexts where one-

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

116

to-one interaction may be more difficult for students and
instructors is a key area for future investigations.

Reinforced Mastery: We asked the instructor to comment
on the interactive authoring tool and its ability to help
clarify the instructor’s understanding of the material.
Overall, he found the step-by-step nature of the authoring
tool helpful and appreciated the ease of finding potential
pitfalls that students might encounter, and how adhering to
a specific style may prevent those errors:

I noticed that students might not wire their ground and power on
the same rail…which was good, because connecting the rails with
a wire is a good thing to do.

The instructor also mentioned how helpful it was to lay out
and design a specific tutorial and learn from their own
mistakes in implementing the project before the student:

It was nice because I had time to prepare and it was much more
defined…less things can go wrong this way and if things do go
wrong, I can spend less time debugging it.

He also suggested that adding features to allow note-taking
at various levels might be helpful as well. Both while
prepping the tutorial and while facilitating the workshop,
the instructor mentioned that they took copious notes which
became unwieldy to organize according to step, section, and
overall workshop activity.

Ambient Nature: A key concern of this project was to not
monopolize or further strain the instructor’s attention with
our system. The instructor expressed appreciation of the
peer-review system’s ability to enforce these behaviors
without relying on persistent instructor intervention:

I didn’t have to worry about identifying who was struggling… was
good because I knew who needed help from my screen and could
go straight to them.

In addition, the instructor expressed that the overall UI
reduced the burden of enforcing good circuit
implementation practices by peripherally encouraging these
behaviors with our system.

Student Feedback
All students were able to successfully complete the circuit
well within the allotted 90 minutes. The average completion
time of the total circuit tutorial was 41min 16s (9min 14s
SD). Only 3/11 students who used the style guide and
followed the step-by-step tutorial system required
additional assistance from the TAs outside of the
instructor’s lecture. Questionnaire feedback indicated that
students were overall enthusiastic about the workshop,
rating their enjoyment an average of 4.1 out of 5. Figure 9
shows a summary of students’ responses to individual
components of the interface on a standard 5 point Likert
scale based on the following criteria, i) Helpful, ii)
Distracting, iii) Confusing, iv) Difficult, and v) Engaging.

Sorting step: We asked students if the sorting step was
helpful for reinforcing their understanding of proper
procedure. Overall, our results indicate that many students

(in particular, those with little to no background in
electronics) found this step to be particularly confusing (See
Figure 9). Our main motivation for creating the sort-
ordering task was to make it easier for instructors to tell
their students to complete their circuits in a proper order
(e.g., inserting ICs first and powering the circuit last).
Although somewhat useful, our results showed that novice
students found this sort-ordered task to be confusing.

Figure 9: Likert scale responses for CircuitStyle case study.

Onscreen tutorial: Overall, students were enthusiastic
about following along with the instructor’s pre-written
tutorial. Many participants expressed that this was their
favorite aspect of the system. We also noticed that having
both written instruction and a picture was helpful. Some
participants reported relying more heavily on the image
than the text, and vice versa. One student initially ignored
the tutorial and style guide altogether because they were
confident in their abilities, but struggled later to complete
the circuit and eventually found several missed steps.

Onscreen style guide: Participants were enthusiastic about
the onscreen style guide, noting that it helped keep their
circuit tidy and organized. Most students, even those with
electrical engineering training, referenced the style guide
while constructing their circuit and found it helpful:

[P8] It was good because most of these things I learned by making
mistakes...some of [the styles] I learned before and it was a nice
review, but some I had not learned yet.

Many novice users also indicated that the style guide helped
them feel more secure in their circuit and reassured that
they were progressing through the tutorial adequately.

Performing Peer Review: In an attempt to minimize the
attention needed by the instructor to reinforce style
behaviors, we required the students to perform peer review.
Students overall reported that performing peer review
helped reinforce their understanding of the material, but
wondered if it was useful in such a small class:

[P4]…it was useful to see how others were doing…but I think this
might be more useful in a larger class…it might also be difficult
with more complicated circuits since you won’t really be able to see
[the style] from a picture.

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

117

Novice users also reported feeling insecure about the
helpfulness of their comments to other students. While
participants with formal training in hardware computing
found providing feedback to be an intuitive process, novice
users were unsure if their input was helpful:

[P2] I wasn’t sure if my comments were helpful since I didn’t have
much experience working with circuits…I might say something
wrong.

Although students have an option to select “I don’t know”
and are not obligated to leave a comment, students may feel
obligated to provide more input than required.

Receiving Peer Review Feedback: Participants overall
appreciated receiving a peer reviewed report, but felt that
the current system did not provide enough feedback. Our
current method of delivering feedback to students involves
a small scroll-in window in the top right-hand corner of the
screen to make it as unobstructed as possible. However,
many students reported looking for further information on
their performance and not being able to locate it.

Receiving Circuit Style Reminders: We also asked
participating students to evaluate our style reminder system
and found that this feature helped students identify potential
problem areas while debugging:

[P5] I had trouble getting my circuit to work at the end but
remember that one [style reminder] said that I hadn’t connected
my ground rails…it was great. I knew where to debug and get it
working.

DISCUSSION
We have contributed the design of CircuitStyle, a tool for
peripherally reinforcing circuit style behaviors for in-person
workshop tutorials. We have also demonstrated the value of
techniques which assist instructors in facilitating workshop
activity, as well as laid the preliminary work for exploring the
applicability of circuit style behaviors to improving hardware
computing education. Although we only examined
CircuitStyle’s utility in a single small workshop setting, a
more in-depth investigation into how this tool impacts
instructor and students’ experience at a large scale can
provide additional useful insights. In this section, we discuss
some limitations and avenues for future work.

Scaling Peer-Review Features
When asked to complete peer review, several students
asked their neighbors to evaluate if the work had been done
correctly. This was unexpected, and a practice that could be
encouraged by a differently configured peer review system.
In future work, it would also be useful to understand the
performance of our current system at a larger scale
workshop. Similarly, our peer review system may prove
difficult to scale for more complicated circuits since
identifying style behaviors from a single photograph of a
complex circuit may be challenging, especially for new
users. This issue could also possibly be alleviated by
encouraging in-person peer evaluations as opposed to
virtual peer evaluations.

Accounting for Varying Skill Levels
Some students also expressed insecurity in their ability to
provide useful feedback to their fellow students,
particularly if the student was a complete novice user. We
could account for this by calibrating our system prior to the
workshop with user background information, and establish
a “virtual mentoring” system by encouraging more
experienced users to provide feedback to less experienced
users. Finally, our system requires the instructor to author a
step-by-step tutorial for the students, and thus our current
system is only reliable for follow-along workshops.
Evaluating our system’s usability in free-form workshop
environments is a principle area of future work.

Alternative Workshop Structures
Although our system proved sufficient for pre-structured
tutorials, not all workshops employ follow-along instruction
methods for teaching hardware computing. Since instructor
and student activity in these free-form workshops differs
significantly, additional design considerations must be
accounted for employing our system in this domain.
Additionally, deploying our system in alternative workshop
settings such as formal education classrooms could provide
insight into the versatility and longevity of our system.
Identifying, adapting, and evaluating our system for such
workshop structures is a key area for further investigation.

AR-based Approaches
Incorporating additional input modalities and interaction
techniques could further mitigate some of the attention
demands of the system. Incorporating AR into our system
could provide additional methods of communicating and
peripherally reinforcing circuit style and tutorial material to
students, as well as further aiding the instructor in
facilitating the activity of the workshop. Additionally, this
interaction modality could encourage physical activity and
peer interaction during the workshop which could be
particularly useful during peer review.

CONLCUSION
This work provided initial validation for the applicability of
circuit styles in follow-along tutorials as well as supported
the notion that circuit style behaviors could be peripherally
reinforced. Our prototype system and case study evaluated
a series of techniques that aide instructors in authoring
tutorials, facilitating workshop activity, maintaining
awareness of class progress, and reinforcing good circuit
prototyping practices without monopolizing instructor
attention. Our work lays the foundation for architecting a
future where instructors collaboratively share the
experience of teaching with a trusted system, allowing the
instructor to fully focus on enjoying the mentoring of their
students. More broadly, our work calls for more HCI
research in the domain of hardware computing to better
support the growing number of novice and untrained users.

REFERENCES
[1] Parasoft. Understanding the Workflow in a Coding

Standards Implementation. 2005. Accessed July 19,
2019.

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

118

docs.parasoft.com/display/CPPDESKV1033/Best+
Practices+and+Workflows

[2] Fraser Anderson, Tovi Grossman, and George
Fitzmaurice. 2017. Trigger-Action-Circuits:
Leveraging Generative Design to Enable Novices
to Design and Build Circuitry. In Proceedings of
the 30th Annual ACM Symposium on User Interface
Software and Technology. 331–342.
DOI=https://doi.org/10.1145/3126594.3126637

[3] Ronald E. Anderson. 1992. Social Impacts of
Computing: Codes of Professional Ethics. Soc Sci
Comput Rev 10(2). 453-469.  

[4] Tracey Booth, Simone Stumpf, Jon Bird, and Sara
Jones. 2016. Crossed Wires: Investigating the
Problems of End-User Developers in a Physical
Computing Task. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing
Systems. 3485–3497.
DOI=https://doi.org/10.1145/2858036.2858533    

[5] Amiangshu Bosu, Michaela Greiler, and Christian
Bird. 2015. Characteristics of Useful Code
Reviews: An Empirical Study at Microsoft.
Proceedings of Working Conf. Mining Software
Repositories. 146–156.    

[6] Hsiang-Ting Chen, Tovi Grossman, Wei Li-Yi,
Ryan M. Schmidt, Björn Hartmann, George
Fitzmaurice, and Maneesh Agrawala. 2014. History
Assisted View Authoring for 3D Models.
Proceedings of the ACM Conference on Human
Factors in Computing Systems. 2027–2036.    

[7] Rohan Roy Choudhury, HeZheng Yin, and
Armando Fox. 2016. Scale-Driven Automatic Hint
Generation for Coding Style. In 13th International
Conference on Intelligent Tutoring Systems.  

[8] Sunny Consolvo, Katherine Everitt, Ian Smith,
James A. Landay. 2006. Design Requirements for
Technologies that Encourage Physical Activity.
Proceedings of the SIGCHI Conference on Human
Factors in Computing. 457–466.  

[9] Daniel Drew, Julie L. Newcomb, William
McGrath, Filip Maksimovic, David Mellis, and
Björn Hartmann. 2016. The Toastboard: Ubiquitous
Instrumentation and Automated Checking of
Breadboarded Circuits. In Proceedings of the 29th
Annual Symposium on User Interface Software and
Technology. 677– 686.
DOI=https://doi.org/10.1145/2984511.2984566    

[10] Volodymyr Dzuibak, Ben Lafreniere, Tovi
Grossman, Andrea Bunt, George Fitzmaurice.
2018. Maestro: Designing a System for Real-Time
Orchestration of 3D Modeling Workshops.
Proceedings of ACM Conference on User Interface
Software Technology.  

[11] Adam Fourney, and Ben Lafreniere. 2014.
InterTwine: Creating Interapplication Information
Scent to Support Coordinated Use of Software.
Proceedings of the ACM Symposium on User
Interface Software and Technology. 429–438.

[12] Adam Fourney and Michael Terry. 2012. PICL:
portable in-circuit learner. in Proceedings of the

25th annual ACM symposium on User interface
software and technology. 569-578.  

[13] Josh Fryman. Coding Standards: Good Idea or
Subtle Evil? 1999. Accessed July 15, 2019.
http://freshmeat.sourceforge.net/articles/coding-
standards-good-idea-or-subtle-evil  

[14] Elena Leah Glassman, Lyla J Fischer, Jeremy
Kenneth Scott, and Robert C. Muller. Foobaz:
Variable Name Feedback for Student Code at
Scale. DOI=609-617. 10.1145/2807442.2807495.

[15] Tovi Grossman, Justin Matejka, and George
Fitzmaurice. 2010. Chronicle: Capture,
Exploration, and Playback of Document Workflow
Histories. Proceedings of annual ACM Symposium
on User Interface Software and Technology. 143–
152.  

[16] Philip J Guo. 2015. Codeopticon: Real-Time, One-
To- Many Human Tutoring for Computer
Programming. Proceedings of the ACM Symposium
on User Interface Software & Technology. 599–
608.  

[17] Chinmay Kulkarni, Michael S. Bernstein, Scott
Klemmer. 2015. PeerStudio: Rapid Peer Feedback
Emphasizes Revision and Improves Performance.
L@S. DOI=10.1145/2724660.2724670.

[18] Ben Lafreniere, Tovi Grossman, and George
Fitzmaurice. 2013. Community Enhanced
Tutorials: Improving Tutorials with Multiple
Demonstrations. Proceedings of International
Conference on Human Factors in Computing
Systems. 1779–1788.   

[19] Chee Kit Looi, Wenli Chen, and Foo Keong Ng.
2010. Collaborative Activities Enabled by
GroupScribbles: An Exploratory Study of Learning
Effectiveness. Computers and Education 54(1). 14–
26.

[20] Wei Li, Tovi Grossman, and George Fitzmaurice.
2014. CADament: a Gamified Multiplayer
Software Tutorial System. Proceedings of the
International Conference on Human Factors in
Computing Systems. 3369–3378.

[21] Xiaosong Li. 2006. Using Peer Review to Assess
Coding Standards – A Case Study. Proceedings of

36th Annual Conference on Frontiers in Education.
DOI=10.1109/FIE.2006.322572.  

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

119

http://freshmeat.sourceforge.net/articles/coding
https://DOI=https://doi.org/10.1145/2984511.2984566
https://DOI=https://doi.org/10.1145/2858036.2858533
https://DOI=https://doi.org/10.1145/3126594.3126637
https://docs.parasoft.com/display/CPPDESKV1033/Best

[22] Xiaosong Li, and Christine Prasad. “Effectively
Teaching Coding Standards in Programming”.
2005. Proceedings of the 6th conference on
Information Technology Education. 239–244.   

[23] Jin-Su Lim, Jeong-Hoon Ji, Yun-Jung Lee, Gyun
Woo. 2011. Style Avatar: A Visualization System
for Teaching C Coding Style. Proceedings of the
2011 ACM Symposium on Applied Computing.
1210-1211.   

[24] Will McGrath, Daniel Drew, Jeremy Warner,
Majeed Kazemitabaar, Mitchell Karchemsky,
David Mellis, and Björn Hartmann. 2017. Bifröst:
Visualizing and Checking Behavior of Embedded
Systems Across Hardware and Software. In
Proceedings of the 30th Annual ACM Symposium
on User Interface Software and Technology. 299–
310.
DOI=https://doi.org/10.1145/3126594.3126658    

[25] David A. Mellis, Leah Buechley, Mitchel Resnick,
and Björn Hartmann. 2016. Engaging Amateurs in
the Design, Fabrication, and Assembly of
Electronic Devices. In Proceedings of the 2016
ACM Conference on Designing Interactive Systems.
1270– 1281.
DOI=https://doi.org/10.1145/2901790.2901833    

[26] Paul W. Oman, and Curtis R. Cook. 1990. A
Taxonomy for Programming Style. Proceedings of
Annual Conf. Cooperation. 244–250.  

[27] Terence Parrand, Jurgen Vinju. 2016. Towards a
Universal Code Formatter Through Machine
Learning. Proceedings of Int’l Conf. Software
Language Engineering. 137–151.  

[28] Suporn Pongnumkul, Mira Dontcheva, Wilmot Li,
Jue Wang, Lubomir Bourdev, Shai Avidan, and
Michael F. Cohen. 2011. Pause-and-Play:
Automatically Linking Screencast Video Tutorials
with Applications. Proceedings of the ACM
Symposium on User Interface Software and
Technology. 135–144.    

[29] Srđan Popić, Gordana Velikić, Hlavac ̌ Jaroslav,
Zvjezdan Pavkovic, Marko Vulić. 2018. The
Benefits of the Coding Standards Enforcement and
its Impact on the Developers Coding Behaviour-A
Case Study on Two Small Projects.
DOI=10.1109/TELFOR.2018.8612149.

[30] Mitchel Resnick, Fred Martin, Randy Sargent and
Brian Silverman. 1996. Programmable bricks: Toys
to think with. IBM Systems journal, 35 (3.4). 443-
452.  

[31] Michael Smit, Barry Gergel, H. James Hoover,
Eleni Stroulia. 2011. Code Convention Adherence

in Evolving Software. Proceedings of 27th IEEE
International Conference on Software
Maintenance. DOI=10.1109/ICSM.2011.6080819.

[32] Katarzyna Stawarz, Anna L. Cox, Ann Blandford.
2015. Beyond Self-Tracking and Reminders
Designing Smartphone Apps that Support Habit

Formation. Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing
Systems. 2653–2622.

[33] Evan Strasnick, Maneesh Agrawala, and Sean
Follmer. 2017. Scanalog: Interactive Design and
Debugging of Analog Circuits with Programmable
Hardware. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and
Technology. 321–330.
DOI=https://doi.org/10.1145/3126594.3126618

[34] David Verweij, Saskia Bakker, and Berry Eggen.
2017. FireFlies2: Interactive tangible pixels to
enable distributed cognition in classroom
technologies. In Proceedings of the ACM
Conference on Interactive Surfaces and Spaces.
260–269.  

[35] Jeremy Warner, Ben Lafreniere, George
Fitzmaurice, Tovi Grossman. 2018. ElectroTutor:
Test-Driven Physical Computing Tutorials.
Proceedings of ACM Symposium on User Interface
Software Technology.

[36] Te-Yen Wu, Bryan Wang, Jiun-Yu Lee, Hao-Ping
Shen, Yu-Chian Wu, Yu-An Chen, Pin-Sung Ku,
Ming-Wei Hsu, Yu-Chih Lin, and Mike Y. Chen.
2017. CircuitSense: Automatic Sensing of Physical
Circuits and Generation of Virtual Circuits to
Support Software Tools. Proceedings of the 30th
Annual ACM Symposium on User Interface
Software and Technology. 311–319.
DOI=https://doi.org/10.1145/3126594.3126634

Session 1B: Software and Hardware Development

UIST '19, October 20–23, 2019, New Orleans, LA, USA

120

https://DOI=https://doi.org/10.1145/3126594.3126634
https://DOI=https://doi.org/10.1145/3126594.3126618
https://DOI=https://doi.org/10.1145/2901790.2901833
https://DOI=https://doi.org/10.1145/3126594.3126658

